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Abstract: 

Digital signal processing has facilitated the digital representation, analysis, and transmission 

of analog signals. This work presents a Project-Based Learning (PBL) approach to 

encourage students to work on real-world projects or challenges to gain knowledge and skills 

in the field of signal sampling and reconstruction, focusing on their significance in 

multidimensional domains where they are applied, such as communication systems, image 

processing, or audio signal processing. Sampling is how a continuous-time signal is 

transformed into a discrete format, i.e., when we select values at different time points. This 

requires taking samples of signal amplitudes at uniformly spaced intervals, which creates a 

stream of quantities. But the main difference is that to extract information from an analog 

signal, we need samples; there is no other way. This process is referred to as sampling rate 

frequency, so it is the number of samples collected during some period of time. 

Reconstruction, on the other hand, means doing a conversion of it from time-discrete to its 

continuous-time form. This operation generated an approximated signal that is continuous 

from those sampled values. Different types of reconstruction methods, such as ideal 

interpolation, zero-order hold, or since interpolation, are chosen based on signal features 

and need. Given that the reconstruction process is limited because it is based on only a finite 

window of samples, it becomes clear how important accurate sampling and reconstruction 

are in preserving the original quality of a signal, minimizing distortion during this part of the 

audio chain. The Nyquist–Shannon sampling theorem, also called as Nyquist criterion or 

sometimes as Shannon sampling theorem, defines a good minimum rate at which a band-

limited signal to be sampled so that it can be reconstructed without the loss of information. It 

is important to note that it would have a big effect on the systems that can be developed, and 

that are both efficient and dependable. In brief, learning sampling and reconstruction is 

arguably the most basic of signal processing concepts. Appropriate sampling allows to keep 

the integrity and quality of a signal across a wide range of applications, i.e., from new 

communication technologies with diminished bandwidth, multimedia systems to many other 

subjects that aim for innovative high-performing digital systems. 

Keywords: Project-Based Learning (PBL), Sampling and Reconstruction of Signal, Digital 

Signal Processing. 

1. Introduction 

Sampling and reconstruction are fundamental operations in signal 

processing that underlie many of the techniques used throughout science 

and engineering. These operations have been studied extensively over 

the years, yielding both theoretical understanding and practical 

applications. One of the earliest and most important contributions is the 
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Nyquist–Shannon sampling theorem, which stems from Harry Nyquist's work up to 1928, and Claude 

Shannon's publications in 1949. Based on this, the first principle (Shannon theorem) states that in 

order to accurately sample and reconstruct a signal, the sample rate must be higher than twice the 

maximum frequency available [2]. It has since become a fundamental concept in digital signal 

processing, and much research has been conducted as a result [3]. Research in this field has gone 

far beyond simplistic uniform sampling [2], [4]. Random and adaptive sampling has been proposed by 

researchers, where the samples are selected intelligently depending on whether the signal is smooth 

or has fluctuations in accordance with the needs of the application. At the same time, compressed 

sensing has recently been introduced as an approximate solution to signal acquisition that permits 

high fidelity, low-precision reconstruction of a sparse signal from samples rather than the traditional 

approach, for significant savings in both acquisition and storage [5]. Signal reconstruction has also 

seen developments. While basic methods like linear or polynomial interpolation are still valuable, 

advanced methods such as wavelet-based reconstruction or compressed sensing algorithms are 

better for complex or noisy data [6]. Applications are numerous: in image processing, methods like 

pixel interpolation, super-resolution, and in painting enhance details or fill in missing data. In audio, 

sampling and reconstruction are key to compression, noise reduction, and synthesis. As with 

communication systems, these principles also apply to the recording and reproduction of sound in 

general, including the use of analog-to-digital (ADC) and digital-to-analog (DAC) conversion for 

wireless transmission, broadcasting, and streaming media. A more recent trend is the application of 

machine learning in the sampling and reconstruction pipeline. Deep learning frameworks, such as 

generative adversarial networks (GANs) and auto-encoders, can be used to learn more complex 

relationships between partial data and original signals, potentially achieving better speed and 

accuracy results [9]. In conclusion, the fields of sampling and reconstruction are far from being settled 

[10]. While the Nyquist–Shannon theorem continues to provide a theoretical foundation, there is 

active research on new sampling patterns, improved reconstruction algorithms, and smarter methods. 

In the future, we will likely see a convergence of traditional signal processing with artificial 

intelligence-driven approaches to design systems that are more accurate, robust, and efficient than 

ever before [11]. 

The rest of the paper is organized as follows. Section 2 presents the design learning of sampling and 

reconstruction of signals. Section 3 describes the design learning of filtering. Methodology is 

discussed in Section 4, while results and discussion are presented in Section 5. Lastly, Section 6 

concluded the work.  

2. Design Learning of Sampling and Reconstruction of Signals 

Signals sampling and reconstruction refer to the processes of sampling and reconstruction of 

signals [12]. In other words, it can be defined as the design and implementation of methods for 

signal sampling and reconstruction. This covers the making of ways and steps for catching and 

bringing back whole-time signs in a digital way. Sampling, in the setup and study of signals, 

includes changing an analog signal into a series-by-time form by taking steady checks of the signal 

[13]. Signal processing follows steps that allow us to analyze, modify, and transmit signals within 

digital systems. In the first step, sampling extracts distinct samples from a continuous signal at regular 

intervals. The frequency at which this occurs is referred to as the sampling rate [14]. Measuring the 

signal’s amplitude at set moments creates a series of distinct samples, like quick snapshots 

that digitally capture the original sound [8]. To rebuild a signal faithfully, the Nyquist–Shannon 

sampling theorem states to sample at least twice as fast as its highest pitch, like taking two crisp 

snapshots for every single wave crest [15]. The discrete samples are converted back to the 

continuous signal through the use of restoration methods. Through the use of interpolation and signal 

processing algorithms, these techniques endeavor to restore the initial continuous form of the signal. 

The continuous signal through several methods, such as piecewise linear interpolation, polynomial 

interpolation, and reconstruction, has been figured out from the discrete samples [16]. The primary 

parameters that change the selection of a reconstruction algorithm are the characteristics of the 
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signal, the desired accuracy of the reconstruction, and the complexity of the calculation [17]. Sampling 

and reconstruction methods pop up everywhere these days across different industries. Take telecom 

as an example, where these techniques are used all the time when converting analog signals to 

digital formats, which makes processing easier and also helps with storage and transmission [18].  

Handling audio data really comes down to nailing the basics of sampling and reconstruction, as 

recording music into compressed files and playing it back cannot be achieved without getting those 

core steps applied. People sometimes forget how much tweaking goes into even standard 

approaches, though new methods keep popping up now and then, which keeps advancing the 

approaches. Despite many advancements, researchers are still finding smarter ways to capture and 

rebuild signals without losing quality. However, these two processes, i.e., sampling and 

reconstruction, pretty much underpin the whole audio tech world [19]. People working on sampling 

tech these days are pushing hard to get better results with less effort [4]. Signal processing really 

comes down to nailing the sampling and reconstruction parts. For example, the microphone of a 

smartphone is used to capture sound waves. That continuous signal gets sliced into digital data points 

through sampling. Then it is reconstructed later without losing quality. Without that process, 

computers couldn't analyze or transmit stuff effectively. The better we get at these techniques, the 

clearer things become. Like streaming HD video without lag or medical imaging, catching tiny details. 

Teams are always finding smarter ways to sample faster while using less power, which matters for 

battery-powered devices. Best practices involve balancing sampling rates with storage needs. Too 

high and you waste resources, too low and you miss critical info. A common approach is to use 

adaptive methods that adjust based on signal complexity. Results show this maintains fidelity while 

keeping systems efficient across telecoms, robotics, and in many other domains. That's why sampling 

and reconstruction stay core to the field, and enable actual real-world tech from voice assistants to 

satellite comms. The trick is making the digital version behave like the original analog signal did, 

which sounds simple but takes serious engineering chops to pull off reliably at scale [14]. Figure 1 

displays the curriculum properties for signal construction and sampling. 

 

Figure 1: Sampling and reconstruction of signals 

2.1. Process of Reconstruction in Signal Processing 

Reconstruction in signal processing refers to the process of recreating a continuous signal from its 

discrete samples. This is commonly encountered in various applications like digital audio processing, 

image processing, and telecommunications. The reconstruction process typically involves 

interpolation or filtering to reconstruct the continuous signal from its discrete samples [2]. The 

continuous musical signal is first sampled at a regular interval to obtain discrete samples. The 

sampling rate must be at least twice the highest frequency present in the signal according to the 

Nyquist theorem to avoid aliasing [2]. 
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So high-pass filtering works by applying a filter that cuts out lower frequencies while letting higher 

ones through. Basically, it takes whatever signal you are working with and blocks the low-end signals. 

These filters usually set a cutoff point, and anything below that gets reduced or just removed entirely. 

Most common filters include Butterworth filters, Chebyshev types, and the elliptic ones, too. Each one 

has its own tradeoffs. Butterworth gives a smooth response but needs more components, while 

Chebyshev ripples in exchange for steeper roll-off. On the other hand, Elliptic does both passband 

ripple and stopband stuff, but designs get trickier. The selection of the filter is based on the underlying 

application, depending on whether phase response is critical or needs sharp attenuation. The real-

world implementations often involve op-amps or digital algorithms these days. Another important 

aspect is component tolerances that affect the actual cutoff frequency in analog circuits [20]. 

Once filtered out the low-frequency parts, reconstructing the signal happens by either interpolating or 

running filters on those cleaned-up samples. There are multiple options available here. One could 

stick with basic zero-order hold for simplicity, use linear interpolation as a middle-ground approach, or 

go fancier with cubic spline methods when you need tighter accuracy. Different situations call for 

different tools; basically, it depends on what balance of speed versus precision the application needs 

at that moment anyway [21]. 

So high-pass filters in music signals are mainly about cutting down or getting rid of those low-end 

frequencies, i.e., the rumbly bassy stuff, while letting the crispy highs pass through untouched. Artists 

and engineers use this for a bunch of reasons. Sometimes it's practical, like stripping out background 

hum from a recording that got picked up by mics, other times it's more creative, trying to carve space 

in a mix so certain instruments don't clash. Here, a careful consideration is required regarding how 

sharp to set the cutoff because going too aggressively, one might accidentally thin out the sound in 

ways that don't feel natural. It's all about finding that optimal point where the unnecessary lows get 

dampened without making things feel hollow or tinny, which takes some trial and error method to get 

the desired results [22]. 

2.2. Metrics used to measure the quality of Reconstructed Signals 

The following metrics are utilized to measure the quality of reconstructed signals [3]. 

2.2.1. Signals-to-Noise Ratio (SNR) 

It measures the ratio of the power of the signal to the power of the noise. A higher SNR indicates 

better quality reconstruction. 

2.2.2. Total Harmonic Distortion (THD) 

THD measures the harmonic distortion introduced during reconstruction. Lower THD values indicate 

less distortion and higher quality reconstruction. 

2.2.3. Frequency Response 

This measures how accurately the reconstructed signal matches the original signal in terms of 

frequency content across the spectrum. A flat frequency response indicates better reconstruction 

quality. 

2.2.4. Interpolation Error 

For interpolation-based reconstruction methods, the interpolation error measures the difference 

between the original signal and the reconstructed signal. Lower interpolation error indicates better 

quality reconstruction. 
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2.2.5. Subjective Listening Tests 

In many cases, the perceived quality of the reconstructed signal by human listeners is also 

considered as a metric. Listening tests involving trained listeners can provide valuable insights into 

the subjective quality of the reconstruction. 

3. Design Learning of Signal Filtering 

A high-pass filter serves to weaken signals below a specified cutoff frequency, known as the stop 

band, while permitting signals above it, referred to as the pass band. The degree of attenuation varies 

based on the filter's design parameters. Common applications of high-pass filters include eliminating 

low-frequency noise, eradicating hums from audio signals, channeling higher frequency signals to 

suitable speakers within sound setups, and extracting high-frequency trends by filtering out low-

frequency components in time-series data [20].  

Filter design is the process of creating a signal processing filter that meets a specific set of 

requirements, which may sometimes be conflicting [22]. The objective is to find a filter configuration 

that sufficiently fulfills each requirement, making it practical and useful. The design process can be 

viewed as an optimization problem, where the goal is to minimize an error function that is influenced 

by each requirement. Through the use of tools, one can automate parts of design work these days. 

But when it comes down to it, having a pro electrical engineer in the mix usually makes the difference 

between okay results and stuff that actually works right. These automated systems are handy and 

help to handle repetitive tasks efficiently. The role of human experts is still there to deal with real-

world variables, unexpected hiccups, and exceptionally tricky edge cases. An experienced engineer is 

able to spot issues that machines would miss, and tweak things in ways algorithms wouldn't think of 

[23].  

Building digital filters isn't just about the math and theories learnt in textbooks. The real deal is way 

challenging than that when we actually try making them work in practice. That happens a lot with filter 

designs. Real-world noise, hardware limits, and unexpected signal quirks - they all throw hurdles in 

the works. That's why there's so much research going into this area. Engineers keep hitting walls with 

traditional methods when dealing with modern tech demands. Better algorithms, smarter optimization 

techniques, adaptive systems, balancing performance with computational costs – everyone's 

scrambling for solutions that hold up outside lab conditions. It's a constant challenge between 

accuracy and efficiency. Each project brings new challenges with it. What worked for audio 

processing might crash and burn in medical imaging systems. So, designing these filters stays 

challenging no matter how much theory is mastered. Researchers are still exploring approaches, 

trying to crack the code for specific use cases while keeping things stable and reliable [24]. The real 

challenge comes from all these little factors to consider to get the right performance targets. Basically, 

it means considering decisions about design stuff like what filter type to use, how to sequence them, 

dialing in those parameters just right in order to balance trade-offs on the fly. It definitely needs careful 

thinking through each process adopted, and how it affects the rest of things down the line [25].  

For the filter design, basically, it's about designing those signal processors so they actually perform 

the tasks in the real setups. The goal is getting filters that hit performance targets while dealing with 

all the constraints that pop up when theory meets actual circuits and code. It comes down to tweaking 

different design parameters and trying to minimize those errors tied to each requirement. Automation 

tools help with some parts, but still need seasoned electrical engineers in the audio mix domain. Their 

input makes or breaks whether you get results that actually work in practice. Like, without that hands-

on expertise, things might look good on paper but crash when real-world variables hit. The balance 

between automated processes and human judgment isn't optional; here it's mandatory for solutions 

that hold up over time [27]. The practical complexities of digital filter design motivate ongoing 

advanced research in this area. Regarding the stability of a filter design, it is assessed using various 

methods depending on the type of filter. For digital filters, stability is often determined by analyzing the 
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filter's transfer function or difference equation. One common method is to check for the location of 

poles in the z-plane; if all poles are within the unit circle, the filter is stable [22, 28]. The sparsity of a 

signal quantifies the proportion of its coefficients or elements that are zero or close to zero. 

Mathematically, sparsity can be measured using metrics [16].  

Finite Impulse Response (FIR) filters are inherently stable due to their structure and properties. Unlike 

Infinite Impulse Response (IIR) filters, which can have feedback loops that may lead to instability, FIR 

filters only have feed-forward structures [23]. The impulse response of an FIR filter is finite in length, 

which ensures bounded output for bounded input, leading to stability. Additionally, FIR filters can be 

designed to have linear phase response, making them suitable for applications where phase distortion 

must be minimized [1]. Designing high-pass filters using MATLAB involves utilizing the signal 

processing toolbox to implement and customize digital filters that selectively attenuate low-frequency 

components while allowing high-frequency components to pass through. Here is a general outline of 

the steps involved in designing high-pass filters using MATLAB [29]. Define the desired cutoff 

frequency, filter order, and any additional specifications, such as stop-band attenuation or pass-band 

ripple [30]. MATLAB provides functions like "butter," "cheby1," or "ellip" to design filters based on the 

selected method. Then plot the frequency response of the designed filter to examine its 

characteristics. MATLAB's "freqz" function can be used to obtain and visualize the frequency 

response [23]. Once the filter is designed, it can be applied to input signals using the "filter" function. 

Assess the performance of the high-pass filter by analyzing its output signal. Compare it to the 

original signal and check if the desired high-frequency components are preserved while the low-

frequency components are adequately suppressed. If the filter does not meet the desired 

specifications, you can refine the design by adjusting the filter order, changing the cutoff frequency, or 

exploring different filter design methods [31]. The formula for the Cut-off Frequency of a high-pass 

filter is the same equation as that of the low-pass filter, and the formula for the phase shift high-pass 

filter is given below [29]. The high-pass filter is shown in Figure 2. 

𝑓𝑐 =
1

2𝜋𝑓𝑅𝐶
      (1) 

 

Where phase shift is denoted by 𝛷 

𝛷 = 𝑎𝑟𝑐𝑡𝑎𝑛
1

2𝜋𝑓𝑅𝐶
     (2) 

Circuit gain is denoted by AV 

𝐴𝑉 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑅

√𝑅2+𝑋𝑐
2
=

𝑅

𝑍
     (3) 

 

At low frequencies, the 𝑋𝑐 is infinity then 𝑉𝑜𝑢𝑡 = 0 

At high frequencies, the  𝑋𝑐 is zero then 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 

 
Figure 2: High-pass filter 
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4. Methodology 

Implementing a Project-Based Learning (PBL) task involves several key steps that aim to engage 

learners in hands-on, inquiry-based activities to develop knowledge, skills, and problem-solving 

abilities. Here are the steps involved in implementing a PBL task. 

First of all, clearly define the learning objectives or outcomes that you want students to achieve 

through the PBL task. Start by making sure everything lines up with what's actually taught in class 

standards, both the knowledge they must have and the skills they should acquire along the way. 

Create scenarios that seem authentic, such as issues that real people may encounter, rather than 

only textbook scenarios. Create a topic that is engaging and relevant to students, sparking their 

curiosity and prompting them to think about possible solutions. Gather necessary resources such as 

tools, books, and websites, and potentially seek advice from local experts, without providing 

excessive guidance. Allow them to determine which resources to utilize, even if they encounter some 

difficulties along the way. Planning phase needs to be structured, but not too much. Help them break 

big tasks into steps, and assign who does what without micromanaging. Check-ins should happen 

naturally, glance at their notes, ask how it's going, and nudge them back on track when they wander 

off. Let them present work in ways that make sense, posters, videos, maybe even teach backs to 

younger grades. Facilitate a post-project reflection session where students can evaluate their 

learning, problem-solving strategies, and collaboration skills. Encourage them to identify strengths, 

challenges, and areas for improvement. The next step is to implement the sampling process. This 

involves converting the continuous-time signal into a discrete-time signal by sampling it at regular 

intervals. The MATLAB function 'sample' can be used to implement this process. Results presented 

by a student team, using discrete devices (transistors, resistors, and capacitors) shown in Figure 3. 

 

Figure 3: Results with discrete devices 

5. Results and Discussions 

5.1.   High-Pass Filtering of Musical Signals 

High-pass filtering of musical signals is a common signal processing technique used to emphasize or 

extract high-frequency components while attenuating or removing low-frequency components. It finds 

applications in various audio processing tasks, such as noise reduction, audio equalization, and 

instrument separation. When performing high-pass filtering on a musical signal using MATLAB or any 

other signal processing tool, the following steps can be followed: 
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▪ Load the musical signal into MATLAB by reading an audio file or generating a synthetic 

waveform. MATLAB provides functions like "audio read" or "sound sc" to facilitate audio file 

loading and playback.  

▪ Determine the desired cutoff frequency for the high-pass filter. The cutoff frequency defines 

the point below which the low-frequency components will be attenuated. Consider the 

characteristics of the musical signal and the specific frequency range you want to emphasize.  

▪ Select a suitable filter design method based on your requirements, such as Butterworth, 

Chebyshev, or elliptic filters. Use MATLAB's filter design functions, such as "butter" or 

"cheby1," to design the high-pass filter based on the chosen method and the desired cutoff 

frequency.  

▪ Utilize the designed high-pass filter to process the musical signal. MATLAB's "filter" function 

can be employed to apply the filter to the audio data. This operation will attenuate the low-

frequency components, allowing the higher-frequency elements to pass through.  

▪ Play the filtered musical signal using MATLAB's audio playback functions like "sound" or 

"sound sc" to audition the result.  

▪ Assess the impact of the high-pass filtering on the audio, focusing on the emphasized high-

frequency components and the reduced low-frequency components. 

If the filtering outcome does not meet your expectations, consider adjusting the filter parameters. 

Experiment with different cutoff frequencies, filter orders, or design methods to achieve the desired 

emphasis on high-frequency content while preserving the musical quality. 

FIR filters offer inherent stability, making them highly desirable. Their ability to maintain waveform 

shape while introducing a delay in the filtered signal makes them particularly appealing. However, 

their long transient responses and potential computational expense can be drawbacks in certain 

applications. FIR filters find utility in various fields such as audio processing, biomedical engineering, 

and radar technology, where preserving waveform characteristics is crucial. Noteworthy design 

techniques for low-pass FIR filters encompass the Kaiser Window, least squares, and equi-ripple 

methods. 

 
Figure 4(a): Design specifications and response of a high-pass Kaiser FIR filter in MATLAB 

5.2.   Discussions 

We explored various sampling techniques, including uniform sampling, non-uniform sampling, and 

compressed sensing. We found that the choice of sampling technique has a significant impact on the 
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Figure 4(b): Design specifications and response of a high-pass Butterworth IIR filter in MATLAB 

 
Figure 5. High-pass filtering of musical signals 

quality of the reconstructed signal. Uniform sampling did well for low-frequency signals. Compressed 

sensing worked better when dealing with sparse representations. We tested multiple reconstruction 

methods, like Nyquist-Shannon and L1-minimization wavelets. L1-optimization performed 

exceptionally well on sparse signals while Nyquist-Shannon held up for band-limited cases. The 

evaluation metrics, i.e., PSNR and MSE, showed better results when combining advanced sampling 

with smarter reconstruction methods, especially in undersampled situations. Whereas high 

compression ratios sometimes wiped out details, messing with signal quality, as there are always 

tradeoffs: sample more, get better quality, but need more storage power. Sampling less saves 

resources but risks accuracy. The main idea is to align your sampling technique with the type of signal 

being measured. Non-uniform and compressed sensing methods excel in situations where uniform 

sampling is not as effective. Here, the selection of reconstruction algorithms is based on the specific 

requirements of sparse signals and computational constraints. Engineers consider various factors in 

the fields of image processing and data compression as they strive to achieve high compression rates 

without compromising quality. People continue to struggle with maintaining balance while cutting data 

without compromising accuracy. Research requires improved methods for reconstructing information 

in difficult circumstances.  

https://www.mathworks.com/discovery/high-pass-filter/_jcr_content/mainParsys/image_0.adapt.full.medium.jpg/1689577440554.jpg
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6. Conclusions 

Handling signals through sampling and reconstruction forms the backbone of how we turn real-world 

data into digital formats people can work with. The Nyquist-Shannon theorem basically set the rules 

for this whole game decades back, paving the way for the modern approaches we rely on today. 

Advancements made in this field have resulted in the widespread implementation of practical 

innovations. Take non-uniform methods or compressed sensing. These let us grab fewer samples 

without losing critical information, which matters big time when dealing with bandwidth limits or 

storage constraints. Standard interpolation still plays a role, but newer algorithms handle trickier 

signal types better now. Accuracy keeps improving as these tools get refined across different use 

cases. Once you start looking, applications are everywhere. Image processing benefits massively 

from these techniques, think medical imaging or video streaming, where clarity matters. The machine 

learning aspect has been gaining traction recently. Deep learning is making waves here by tackling 

incomplete or messy data that older methods struggle with. Teams are using stuff like GANs and auto 

encoders to fill gaps in sensor readings or clean up distorted signals automatically. Results show 

promise, but there’s still work to do there. At its core, these processes let us preserve and use signals 

effectively across industries that are not changing anytime soon. What keeps things moving forward is 

the constant tweaking of existing methods while exploring new combos with emerging tech like AI 

tools we’re seeing now helps push boundaries further than before. 
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