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Abstract:  

Glaucoma is one of the leading causes of blindness worldwide. It occurs due to high pressure 

in the eyes and other factors such as family history, age, ethnicity, etc. It damages the optic 

nervous system which is irreversible damage. That's why regular screening for glaucoma is 

crucial and recommended. Researchers are continuously searching for better methods to 

identify glaucoma at early stages before it becomes worse and incurable. Significant work 

has been conducted on it, but there is still room for improvement. The main goal of this study 

is to propose a reliable system for glaucoma detection that considers the key factors 

contributing to glaucoma development, in accordance with the decisions made by clinical 

experts. In this work, the U-net model is used with EfficentNetb3 as a backbone model for 

optic disc and optical cup segmentation. In addition, a general deep learning model that has 

1D convolution layers and other basic layers is used for glaucoma classification. Features 

extracted from optical disc and optical cup are used to train the deep learning model and 

overall 95% classification accuracy and 0.92 AUC are achieved for glaucoma classification 

on the RIGA dataset.  

Keywords: Optic Disk and Optic Cup (OD and OC); Glaucoma; ROI; Retinal Fundus 

Images; Image Classification; CDR; Optic Nerve Head (ONH). 

1. Introduction 

Glaucoma, as per WHO data [2], ranks second in global blindness causes. 

In Pakistan, more than 1.8 million patients suffer from glaucoma, with 

nearly half experiencing permanent vision loss due to diagnostic and 

treatment delays [2].Glaucoma disproportionately affects Asians and 

women, standing as the second leading cause of blindness worldwide. By 

2020, the number of individuals with OAG and ACG will reach 79.6 million, 

with 74% of them having OAG[1] .Although everybody can get glaucoma, 

some populations are more vulnerable. Glaucoma is 6–8 times more 

common in African Americans than in White people. Those who have 

diabetes are twice as likely to get glaucoma as those who do not. 

Glaucoma damages the visual nerve irreparably if it is left untreated, which 

results in blindness. Therefore, Early glaucoma diagnosis is crucial for 

managing the disease’s primary medical therapy in an effective manner. 

The study of existing glaucoma detection methods and the formulation of 

a novel glaucoma detection strategy are the key objectives of this 

research. The difficulty during cup and disk segmentation may result from 

the use of additional filters and morphological processes to remove veins 

during pre-processing steps. Machine learning and deep learning 

approaches provide good accuracy for the detection of glaucoma as 

compared to image processing techniques [3]. Without using conventional 

image processing methods, the objective is to obtain more accuracy in 

comparison to other methodologies described in the literature.   
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2. Literature Review 

While significant research has been conducted on improving glaucoma diagnosis, there is still a need 

for further advancement. In this section, we will assess current methods for detecting glaucoma and 

segmenting the OC(OC), along with their limitations. 

Almazroa et al. developed glaucoma detection system using image processing techniques. They 

applied a localizing technique to get the ROI(ROI). Afterward, they performed manual segmentation 

marking and then calculated horizontal and vertical cup to disk ratio to determine the presence or 

absence of glaucoma [3]. Vishal Jindal in his work associated glaucoma with different body diseases 

that are also degenerative such as Alzheimer, osteoporosis, etc., [4]. Adnan Haider et al. suggested 

two networks in their work; the separable linked SLS-Net and the separable linked SLSR-Net, to solve 

the issue that the OC boundaries are not very clear that makes it difficult to accurately segment the OC 

and accurately segment the OC and OD at the pixel level [5]. An automated glaucoma diagnosis 

technique was developed by H. N. Veena et al. [7] where they performed some preprocessing before 

giving the images as input to both CNN models that are used for optic disc and cup segmentation. After 

segmentation, they calculate cup to disk ratio for glaucoma detection. Yuji Hatanaka et al., explain a 

better method that makes use of the blood vessel bends that help them to improve their accuracy in 

glaucoma detection method [7]. Arunava Chakravarty et al., In their study, proposed a Multi-task 

Convolutional Neural Network (CNN) that simultaneously separates the OC(OC) in color fundus 

pictures and detects the occurrence of glaucoma [8]. Rongchang Zhao et al., present a unique WSMTL 

strategy for precise evidence recognition, optic disc segmentation, and automated glaucoma detection 

[9]. Chisako Muramatsu et al. proposed a technique for detecting retinal nerve fiber layer defect which 

is also the symptom of glaucoma [10]. Jose Ignacio Orlando et al. performed an analysis using a CNN 

model for glaucoma detection that was pre-trained on non-medical data [11].  

Welfer et al. [13] propose an adaptive method for ODsegmentation based on mathematical morphology 

and vascular structure modeling. This method includes two stages: first, detecting the OD location by 

analyzing the main vessels arcade, and second, delineating the OD boundary using the watershed 

transform. Shubnam Joshi et al. [14] used datasets from different sources that were then passed as 

input to pre-trained CNN models Resnet, VGGNET-16, and GoogLeNet. Subsequently, the output of 

these models is combined in a prediction vector and then the decision is finalized based on majority 

voting that either the images are normal or glaucoma-affected. V. Elizabeth Jesi et al., proposed a 

machine learning model for glaucoma classification. HSV features are used to enhance the image and 

blood vessels are removed from images. Subsequently, a  K-mean optimization method is applied for 

better accuracy of glaucoma classification [14]. Cheng and Huang used an adaptive thresholding 

technique to localize and segment the optic disc (OD). They determined the threshold (T) based on the 

brightest spot in the fundus image and chose the red channel due to its minimal blood vessels as 

distractions. The object with the most 8-connected pixels was selected. By using a deep learning 

approach Syna Sreng et al., proposed their two-stage deep learning model for the detection of 

glaucoma. In the first stage their DeepLabv3+ model segments the optic disc by semantic segmentation 

and then in the second stage classification of normal and glaucoma-affected images is done [16]. 

Munazza Tabassum et al. proposed a model named CDED-Net for the joint segmentation of OC for 

glaucoma detection in which they used eight different convolution layers in encoder and decoder block, 

whereas at encoder stage re-use of feature technique is used to improve the accuracy and network’s 

efficiency [17]. Muthu Rama Krishnan M et al. proposed an inexpensive automated glaucoma diagnosis 

system that draws hybrid features from digital fundus images [18]. Qaisar Abbas in his research, 

proposed a system referred as Glaucoma-Deep. In this model, features were extracted from raw image 

intensities using a multi-layer CNN architecture that was unsupervised [19]. Hafsah Ahmad et al. 

proposed a glaucoma detection technique where characteristics from retinal fundus images are 

extracted and used to classify glaucoma by computing CDR. Another feature for glaucoma detection is 

the Ratio of Neuroretinal Rim in the inferior, superior, temporal, and nasal quadrants, or ”ISNT 

quadrants” which is also computed in their work for glaucoma detection. They implemented their method 
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on 80 retinal images [20]. Atalie C. Thompson et al., proposed a Deep Learning (DL) algorithm that 

assesses the glaucoma damage from SD-OCT B scan images that did not have segmentation lines  

[21]. WangMin Liao et al., proposed a unique clinically interpretable Con-Net design called EAMNet 

(evidence activation mapping) for more transparent interpretation by emphasizing the different regions 

that the network recognizes, in addition to providing an accurate glaucoma diagnosis [22]. In [24], deep 

neural networks were employed for optic disc segmentation. The authors utilized faster R-CNN, 

extracting various features from the dataset images [24]. Afolabi O. Joshua et al. employed an improved 

U-net CNN model for segmenting the optic cup and disc [25]. Fauzia Khan et al. introduced an image 

processing technique for early glaucoma detection. They classify glaucoma by extracting two features 

from retinal fundus images: (i) CDR and (ii) Ratio of Neuroretinal Rim in inferior, superior, temporal, and 

nasal quadrants [26]. Muthu Rama Krishnan Mookiah et al. proposed an innovative method of optic 

disc segmentation using intuitionistic fuzzy histon [27]. Zhuo et al. [28] presented a multimodality fusion 

approach to detect the optic cup. They evaluated various segmentation and boundary detection 

methods to enhance neuro-retinal optic cup estimation accuracy. Muhammad Naseer Bajwa et al. 

proposed a two-stage deep learning classification model for glaucoma detection. The first stage locates 

and extracts the optic disc using RCNN, while the second step categorizes the extracted disc as healthy 

or glaucoma-affected using Deep CNN [29]. In [3], an adaptive local thresholding technique generates 

a binary image. Large connected components representing major vessels are extracted from this image. 

The remaining fragments, including thin vessel segments or pixels, are then classified using SVM. 

3. Material  

For this work, two datasets are used that are publicly available. One dataset for retinal vessel 

segmentation and other datasets for OD and OC segmentation and glaucoma classification. The first 

dataset is retrieved from Kaggle (https://www.kaggle.com/code/ipythonx/retinal-vessel-segmentation-

starter/input) which is primarily used for vessel segmentation. There are four folders in this dataset but 

we used only the DRIVE folder for this work. The test and train folder contains 20 images with their 

associated masks. All images of this dataset have dimensions 565 x 584p and are saved in tiff and gif 

format. The second dataset is RIGA- the Retinal Fundus Images for Glaucoma Analysis is a published 

and licensed dataset [2] that is used for OD and OC segmentation and also for glaucoma classification. 

This dataset consists of three folders: Folder Messidor consists of 460 images. The size of the images 

in this folder are 2240 x 1488p and 1440 x 960p. Folder Magrabia contains 95 images of which 48 

images are of females and 47 images are of males. The size of the images in this folder is 2743 x 

1936p. Folder Bin rushed contains 195 images. The size of the images in this folder is 2376 x 1584p. 

The entire RIGA dataset contains 750 images that are used as original images and 4500 images that 

are ground truth images of the original images. All the Dataset images are saved in tiff and jpg format. 

This dataset has no separated folders for normal and glaucoma-affected images. For automated 

glaucoma detection, there is a need for ground truth regarding glaucoma-affected or normal images. 

Therefore, the RIGA dataset is partially marked for the ground truth from an expert eye specialist doctor 

as normal, glaucoma, and suspected. From the 750 total images (taken for experiments), there are 54 

glaucomatous images and 71 suspected images, and the remaining are considered as normal images. 

4. Proposed Method 

The approach employed in this study involves several steps. Initially, retinal fundus images undergo 

pre-processing steps such as resizing, normalization, and data augmentation. Following this, a deep 

learning model is used for OC(OC) segmentation. Once the disk segmentation is done, the ROI is 

extracted. Subsequently, using the same deep learning model, retinal vessel segmentation is 

performed, and another ROI is obtained comprised of boundary around the Optical Disc region after 

removing the vessels. Finally, texture-based features of the cup and disk are computed separately and 

fed into our proposed deep-learning model for classification. The proposed methodology is shown in 

Figure 1. 

https://www.kaggle.com/code/ipythonx/retinal-vessel-segmentation-starter/input
https://www.kaggle.com/code/ipythonx/retinal-vessel-segmentation-starter/input
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Figure 1: Methodology flow 

4.1. Pre-processing 

In pre-processing, first, the image is resized with dimensions 224 x 224 because the original dimensions 

of the images were too large for giving them as input to subsequent steps. Subsequently, Normalization 

is performed normalization on the resized images and the range is set between 0 and 1 of pixel values 

by dividing each pixel of the image by 255. It guarantees that each input (in this case, each pixel value) 

is drawn from a standard range.  

4.2. Data Labelling 

Machine and deep learning models can be trained using provided masks to label entire images or 

recognize specific groups of items within an image. While the RIGA dataset contains images along with 

their ground truth, the ground truth for the OC are not available in a format suitable for training deep 

learning models. To train our deep learning segmentation model effectively, it is essential to have labels 

for the cup and disk. Therefore, we labeled the masks for OC and OD using LabelMe software. 

4.3. Data Augmentation 

In this work, we used the widely used technique of Data Augmentation in machine learning and 

computer vision. Data augmentation aims to increase the training dataset's size by generating modified 

versions of existing data samples. This technique is crucial for preventing overfitting during model 

training. Various transformations are employed to create diverse data samples, such as rotations, flips, 

scaling, and color adjustments. Additionally, data augmentation enhances the model's ability to extract 

features. In our study, we specifically apply random horizontal flips, rotations up to 45 degrees, and 

slight variations in brightness and contrast. 

4.4. Segmentation Model Architecture 

For segmentation, we used a modified U-net model with EfficentNetb3 as a backbone model for the 

segmentation of OC and OD regions as well as for vessel segmentation. The EfficentNetb3 model is 

used as the encoder part and the U-net model is used as the decoder part in our proposed segmentation 

model. The details of both model architecture and their benefits are described in the following 

subsections. 

4.4.1. U-net Model 

A popular deep-learning model for semantic segmentation is called U-Net. In jobs like biomedical image 

segmentation, where accurate delineation of structures becomes vital, U-Net has been very successful 
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U-Net uses both an ”expansive” and a ”contracting” approach to build its extensive features. Figure 2 

shows our modified segmentation model. In our proposed model in decoder side U-net layers are 

implemented. The decoder is the U-Net architecture’s second element. The low-resolution image 

feature maps are upsampled to the encoder’s original input image size. With concatenation operations 

and a number of upsampling layers, the decoder combines the matching feature maps from the 

encoder. The feature maps’ spatial dimensions are increased by the upsampling layers while 

maintaining their channel-wise data. The last Upsampling layer in our model upsampled the previous 

layer's 112 x112 dimension to 224 x 224 dimension which is the same as our input image dimension. 

The concatenated feature maps help in the recovery of fine-grained details by integrating high-

resolution data from the encoder. Figure 2 shows the concatenation like from the encoder side Block6a 

concatenate with decoderblock0. In each decoder block as shown in Figure 3 we have 2 Convolution 

blocks whose objective is to extract features from its input data. Activation, batch normalization, and 

convolutional layers are utilized in succession. A deep learning model’s non-linearity and solving the 

problem of vanishing gradients are introduced by the rectified linear unit (ReLU), an activation function. 

In the output block of our modified U-net model, we have 2 conv blocks, Upsampling and additional 

convolution layer and a softmax layer. In the output block, the last two extra layers are added for better 

processing of output and introducing more non-linearity in the model [30].  

4.4.2. EfficentNetb3 Model 

EfficientNet is one of the more significant Convolution Neural Networks among a large number of them. 

Compared with all of its predecessors, it has provided improved performance. In CNN designs, scaling 

up (raising the number of layers) is typically a laborious process because there are many different ways 

to scale up. Manual selection of the perfect combination takes a lot of time. EfficientNet uses a new 

scaling technique that uses a straightforward but incredibly effective compound coefficient to equally 

scale all depth, width, and resolution parameters for better results. All models from B1 to B7 have the 

same base layers but as the model becomes updated the number of layers is increased as 

EfficentNetb0 has 237 layers and B7 has 813 layers. It is clear that the architecture uses seven inverted 

residual blocks, although they all have unique configurations. SE blocks are also used in these blocks. 

Like Block 1 has 1a and 1b and both of them have multiple layers that perform multiple functions. Block 

1a contains Depthwise convolution, batch normalization, activation, global average pooling layer for 

squeeze purpose, excitation block, and reshape layer (part of SE block). Many of these layers are also 

repeated in this block like convolution, activation, and batch normalization. Each block of Efficentnetb3 

as shown in Figure 2 further consists of multiple blocks that have many layers as we described in 

block1a. Block2 has (2a,2b,2c), Block3 has (3a,3b,3c), Block4 has (4a,4b,4c,4d,4e), Block5 has 

(5a,5b,5c,5d,5e), Block6 has (6a,6b,6c,6d,6e,6f), and Block7 has (7a,7b). EfficentNetb3 uses depth-

wise convolution, contrary to normal CNNs, where convolution is performed to all M channels at once, 

the depth-wise operation only applies convolution to one channel at a time [30]. 

4.5. Extract Region of Interest 

After OD and OC segmentation, ROI is extracted on the basis of OD segmentation as shown in Figure 

4. Afterward, canny edge detection is applied on the predicted mask of the segmentation model for 

getting the edges of the disk mask. After getting the edges of the optic disk,  minimum x and y also 

maximum x and y surrounding the optical disk are retrieved to get refined ROI. Following this, the size 

of the ROI is increased by 10 percent in both width and height. The enlarged ROI dimensions are then 

used for obtaining the ROI after vein segmentation. 

4.6. Retinal Vessel Segmentation and Vessel Removal from OD and OC ROI 

For glaucoma classification, features are extracted features from the OD and OC regions. To enhance 

feature extraction from these regions,  retinal vessel segmentation is performed to remove vessel areas 

from the OD and OC regions. Vessel segmentation aids in extracting only the pertinent features from 

the OD and OC regions, excluding vessel areas, for more accurate glaucoma classification. The same 
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Figure 2: Proposed segmentation model 

 

 

Figure 3: Dec and Convolution block detail 

  

(a)               (b)             (c)    (d)      (e)     (f) 

Figure 4: ROIand Vessel removal results. (a) original image, (b) segmentation model output, (c) ROI 
of predicted output, (d) vein segmentation model output, (e) ROIof predicted output, (f) vein removal 

and ROIfrom the original image 
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segmentation model used for OD and OC segmentation was employed for vessel segmentation 

(Section 4.4). The results of vessel segmentation on a sample image from the dataset are depicted in 

Figure 4(d). 

After vessel segmentation, a ROI of the same size as for OD and OC regions is extracted from the 

segmented vessel image to remove vessels from those regions (Figure 4(e)). The vein region was 

extracted so that the vein area could be filled by the surrounding pixel values, effectively removing 

vessels from the OD and OC area (Figure 4(f)). 

4.7. Feature Extraction 

Texture features are extracted from OD and OC ROIs using GLCM-based features. Features are 

computed on both separable images of OD and OC. To get deep details of the texture, first, the image 

is divided into patches (on average 158 patches per image) for OD and OC regions. Afterward, texture 

features are computed that include dissimilarity, correlation, entropy, mean, variance, median, 

skewness, and kurtosis of each patch. The formulas to compute these texture features are shown 

below: 

Dissimilarity = ∑ Xa,b  |a − b|M−1
a,b=0          (1) 

Correlation =  ∑ Xa,b  
(a−μa)(a−μb)

√(σa)2 (σb)2 

M−1
a,b=0            (2) 

Entropy = ∑ Xa,b  (−lnXa,b)M−1
a,b=0               (3) 

Mean = μa =  ∑ aXa,b , μb =  ∑ bXa,b , μ =
μa+μb

2
M−1
a,b=0

M−1
a,b=0            (4) 

Variance = σa
2 =  ∑ Xa,b(a − μa)2 , σb

2 =  ∑ Xa,b(b − μb)2 ,M−1
a,b=0  σ2 =

σa+σb

2
M−1
a,b=0                  (5) 

Skewness =
∑ (qi−q̅)3N

i=1

σ3             (6) 

Kurtosis =
∑ (qi−q̅)4N

i=1

σ4               (7) 

Here, 𝑋𝑎,𝑏 = the probability that values a and b will appear in neighboring pixels in the original image 

within the window defining the neighborhood, a = the columns, and b = the rows. 

The median is determined after numerically ordering all of the values of the pixels from the window and 

choosing the middle pixel value. In Figure 5 cup and disk areas are shown with vessel removal that are 

further for feature extraction. It's crucial to note that features are computed separately for both the OD 

and OC regions, treating them as distinct entities with varying contributions to glaucoma appearance. 

4.8. Classification Model Architecture 

For classification, a general deep learning model is proposed as shown in Figure 6 that has basic layers 

 

     

(a) (b) (c) 
Figure 5: (a) optic cup and disk segmentation result, (b) extracted cup area, (c) extracted disk area 
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and is easy to understand. This model has three 1D convolution layers along with max-pooling and 

activation layers and 2 dense layers at the end. Text and 1D signals are the two main applications of 

1D Convolution. The kernel flows in a single direction, from right to left (for feature values). The values 

on the feature map display the position and importance of each feature. In the activation layer sigmoid 

activation function is used. The sigmoid function is useful in data analytics and many other domains 

since it can convert any real number to a value between 0 and 1. It contributes to the classification 

model by providing non-linearity, transforming outputs into probabilities, facilitating probabilistic 

interpretation of predictions, and defining a clear decision boundary between classes. To input data 

from a 1-D array into a classification model, we employ a technique called flattening, which transforms 

multidimensional arrays into 1-D arrays. The Dropout layer helps prevent overfitting in models. During 

each training update, the outgoing edges of hidden units (neurons in hidden layers) are randomly set 

to 0, as part of Dropout. Neurons in the simple layer (also known as the fully connected layer) receive 

information from every cell in the layer below. Based on the results from convolutional layers, a dense 

layer is used for image categorization. Using the classification model trained on features computed from 

cup and disk patches (as shown in Figure 6), images are classified as normal or glaucoma images. The 

model’s output represents results in 0-1 form, where 0 corresponds to normal and 1 to glaucoma. 

Figure 6: Proposed classification model 

5. Experimentation 

The model takes in an image with dimensions of  224  x 224 as input. It’s vital to remember that these 

measurements constitute a color channel image, with each pixel denoting the image’s brightness or 

intensity level. The encoder section gathers feature representations while downsampling the input 

image.  

Many depth-wise convolutional layers are applied to get deep feature extraction from the image. The 

convolution layer along with batch normalization and activation layers are also implemented. All 7 blocks 

that are shown in Figure 2 on the encoder side are used for the enhancement of the capability of the 

feature extraction. In order to decrease the spatial dimensions and avoid overfitting, dropout techniques 

are used. Block 7 acts as a bridge between the encoder and decoder section as shown in Figure 2. 

Skip connection is also used for some Blocks of the encoder side. Block2a, 3a, 4a, and 6a are used as 

a skip connection and concatenate with decoder block 3,2,1,0 respectively. The decoder side makes it 

possible to locate objects precisely. The feature maps are upsampled and the desired output is rebuilt 

in the decoder portion. The layers detail of the decoder side is also shown in Figure 5. From the output 

layer of the encoder side, we get the predicted mask.  

The computer specifications used for implementation include an i7 CPU, 16 GB RAM, and a Nvidia 

GeForce GTX 1060 with 6 GB GPU. Overall work was conducted on the Google Colab platform. 

TensorFlow was employed to implement the suggested model, with TensorFlow version 2.12 and 

Python version 3.10 present in the software environment. Adam optimizer is used with a learning rate 
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of 1e-4 to train the models. The dice coefficient loss function, suitable for segmentation tasks, was 

utilized. During training, the dataset was iterated over with a batch size of 4 for segmentation tasks and 

16 for classification tasks. After several trials to determine an appropriate number, 100 epochs were 

chosen for training the segmentation model, and 200 epochs for the classification model to achieve 

minimal loss. It has been discovered that training for more epochs might result in overfitting, in which 

the model becomes overly specialized to the training data and operates badly on new, untainted data. 

For the segmentation model for OD and OC area, 80% of the data from the RIGA dataset is used for 

training, while the remaining 20% is used for testing. Data augmentation is also used in this approach 

so the model can also give a good result on unseen data in the future. The segmentation model is 

trained on the labeled data that is already marked using Labelme software on the basis of ground truth. 

70:30 train-test split ratio is used for the classification model, where the model is trained on eight texture 

features that are computed from cup and disk patches separately. 

5.1 Performance Evaluation Parameters  

For performance evaluation metrics, Dice Coefficient (DSC) and Intersection over Union (IOU) are 

utilized to assess the segmentation model's performance. For the classification model, Accuracy, F1 

score, Precision, and Recall are used as classification performance evaluation metrics. Predicted 

segmentation masks and the ground truth mask are denoted as A and B, respectively. The total number 

of pixels within each set is indicated by |A| and |B|. The intersection of the two sets is denoted by the 

expression |A ∩ B|, representing the shared pixels between the two sets. 

Dice Coefficient =  
2 ∗ |A∩ B|

|A | + |B|
          (8) 

Dice Loss =  1 −  Dice Coefficient          (9) 

IOU =  
|A ∩ B|

|A ∪ B|
           (10) 

Accuracy =  
TN + TP

TN+TP+FN+FP
         (11) 

6. Results and Discussions 

This RIGA dataset was only used by some researchers for OD and OC segmentation but no one utilized 

this dataset for classification because there is no ground truth marked as a normal or glaucoma label. 

For this work, the RIGA dataset is marked for Normal, Glaucoma, or suspicious cases by the eye 

specialist doctor. Some images in this dataset show the early stages of glaucoma where the cup size 

is not significantly increased. Consequently, the CDR may not be an effective factor for characterizing 

such cases as glaucoma. In contrast, the proposed method of extracting texture features from the disk 

and cup areas is more helpful in classifying images as glaucomatous rather than relying solely on CDR.  

Figure 7 shows the segmentation results for some of the sample images from the dataset. The proposed 

segmentation model gives IOU 0.856, Dice loss 0.247, and Dice Coefficient 0.75. Whereas, 95% 

accuracy, 0.90 f1 scores, 0.89 precision, and 0.90 recall are achieved for the proposed classification 

model.  

Figure 8 and Figure 9 present additional segmentation results from the dataset. In Figure 8, refined 

segmentation boundaries are evident, while Figure 9 displays some boundaries that are ill-defined. 

However, these ill-defined do not affect the overall classification results. Patients with glaucoma 

experience changes in their eye structure, which is why we opted for texture features for glaucoma 

classification. In our scenario, if the segmentation slightly deviates from the boundary marked by 

ophthalmologists, it's not a cause for concern because patients with glaucoma exhibit changes in their 

outer disk boundary. The feature from the outer boundary region is also valuable for glaucoma 

detection. Table 1 presents some glaucoma classification results compared with the ground truth. Upon 

analyzing the table, our model's predicted output is encouraging, but there are some inaccuracies in 

certain images, indicating that our model still requires improvement through further training on additional 

features. 
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         (a)                    (b)                        (c)                    (d)                     (e)                     (f) 

Figure 7: output visualization, (a) original images, (b) ROIof predicted output, (c) ROIextracted from 
original image as per the calculated dimensions from (b), (d) vein removal from region of interest, (e) 
cup and disk areas from region of interest, (f) cup and disk segmented boundary blue line show cup 

boundary and green line show disk boundary 

As explained in Section 3, the RIGA dataset is categorized by doctors into normal, glaucoma, and 

suspected cases. Suspected cases are further divided into suspected normal and suspected glaucoma, 

indicating a higher likelihood of developing glaucoma or remaining normal. In Table 2, the results of 

suspected cases are predicted by our classification model (as suspected normal or suspected by 

 

      

       (a)                   (b)                   (c)                   (d)                  (e)                   (f) 

Figure 8:  Segmentation results with refined boundaries. (a),(c),(e) images are ROIimages whose 
segmentation is shown in (b),(d),(f). 

      

        (a)                  (b)                  (c)                  (d)                 (e)                   (f) 

Figure 9: Segmentation results with ill-defined boundaries. (a),(c), and (e) are ROIimages whose 
segmentation results are shown in (b),(d),(f). 
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                                                        Table 1: Glaucoma classification results 

Image name Folder name 
Model 
Prediction 

Ground 
Truth 

Image9prime Bin1 Glaucoma  Glaucoma   

Image16prime Bin4  Glaucoma  Glaucoma  

Image33prime Bin2 Glaucoma  Normal  

Image35prime Female  Normal  Normal  

Image121prime Messidor  Glaucoma  Normal  

 

Table 2: Suspected glaucoma classification results 

Image name Folder name 
Model 
Prediction 

Ground 
Truth 

Image31prime  Bin1 Glaucoma  Normal  

Image17prime  Bin2 Normal  Glaucoma  

Image34prime Bin3 Normal  Normal  

Image49prime Bin4 Glaucoma  Glaucoma  

Image160prime Messidor  Normal  Normal  

 

glaucoma), and then compared with the ground truth of suspected cases marked by eye specialist 

doctors. 

The RIGA dataset mostly comprises cases in the early stages of glaucoma, but there is still a chance 

that these patients may be normal. This is confirmed by conducting additional tests on the patients to 

check their eye pressure and eye structure. In these instances, our model requires some improvement 

to detect the very early stages of glaucoma by training on multiple features. 

6.1 Comparison with Existing Techniques 

The comparison in Table 3 is based on the accuracy of the proposed models. Here, we evaluate several 

existing methods for classifying glaucoma and compare their effectiveness with our proposed approach. 

Adnan Haider et al. [6] utilized the Rim-One-r3 and REFUGE datasets. They performed OD and OC 

segmentation using deep learning methods, achieving good results, but relied on the Cup-to-Disc Ratio 

(CDR) parameter for glaucoma classification, with accuracies of 0.90 and 0.925. Shubham et al. [14] 

utilized the DRISHTI-GS, DRIONS-DB, HRF, PSGIMSR, and combined datasets. They employed an 

ensemble-based deep learning model for classification, achieving accuracies of 95%, 95%, 98%, 91%, 

and 88% respectively. V. Elizabeth Jesi et al. [15] used a private dataset and achieved 96% accuracy 

in glaucoma classification based on the CDR parameter, although they did not test on publicly available  

Table 3: Glaucoma classification performance comparison 

Author Year Dataset Accuracy 

Shubham [14] 
2022 
 

Four publicly available 
dataset 

91%, 95%, 
98%, 95% 
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Syna Sreng [17] 
 

2020 
 

Five publicly available 
dataset 

97.37%, 
90.0%, 
86.84% and 
99.53% 

Adnan Haider [6] 
 

2022 
 

Two Publicly 
available dataset  
 

0.90%, 0.92% 
 

V.Elizabeth [15] 
 

2021 
 

private dataset 
 

96%  
 

Fan Guo [32] 
 

2020 
 

ORIGA dataset 
 

0.84 % 
 

Rahul Krishnan [33] 
 

2020 
 

Dristhi-GS 
 

86%  
 

Proposed method 2023 RIGA 95% 

 

datasets. Syna Sreng et al. [17] utilized a two-stage system for glaucoma classification, achieving 

accuracies of 95% on REFUGE, 97% on RIM-ONE, 99% on ACRIMA, 86% on DRISHTI-GS1, and 90% 

on ORIGA datasets, with corresponding Area Under the Curve (AUC) values of 95%, 100%, 99%, 91%, 

and 92% respectively. From the comparison, it is important to note that the dataset used in this study 

has not been previously used for classification. 

7. Conclusion and Future Work 

In this study, we proposed a deep learning-based automated system for glaucoma classification, as 

well as OD and OC segmentation. Our proposed methodology achieved an accuracy of 95%, an F1 

score of 0.90, precision of 0.89, and recall of 0.90 for glaucoma classification when compared against 

the ground truth. Our model also performed well on suspected patients. Although the results of our 

proposed approach for glaucoma classification are promising, there is still room for improvement to 

avoid false predictions. Therefore, our future focus will be on enhancing this method by testing it on 

larger datasets. 

Acknowledgment 

We would like to acknowledge Dr. Arslan Ashraf, an eye specialist at Hussain Memorial Hospital in 

Lahore, Pakistan, for his valuable time spent in marking the ground truth for the RIGA dataset, including 

normal, glaucomatous, and suspicious cases. We also thank him for providing insights on suspicious 

cases and distinguishing between suspicious normal and suspicious glaucoma cases. 

8. References 

[1] L. Khan, M. Ali, M. Qasim, F. Jabeen and B. Hussain, "Molecular basis of glaucoma and its therapeutical analysis in Pakistan: 

an overview," Biomedical Research and Therapy, vol. 4(03), pp.1210-1227, 2017. 

[2] H. A. Quigley and A. T. Broman, "The number of people with glaucoma worldwide in 2010 and 2020," British Journal of 

Ophthalmology, vol. 90(3), pp. 262–267, 2006. 

[3] H. N. Veena, A. Muruganandham and T. S.  Kumaran, "A Review on the optic disc and optic cup segmentation and 

classification approaches over retinal fundus images for detection of glaucoma," SN Applied Sciences, vol. 2, pp. 1–15, 

2020. 

[4] A. Almazroa, S. Alodhayb, E. Osman, E. Ramadan, M. Hummadi, M. Dlaim, M. Alkatee, K. Raahemifar and V. 

Lakshminarayanan, "Retinal fundus images for glaucoma analysis: the RIGA dataset," In Medical Imaging 2018: Imaging 

Informatics for Healthcare, Research, and Applications, SPIE, 2018, vol. 10579, pp. 55–62.  

[5] V. Jindal, "Glaucoma A multifactorial disease and its multidimensional management," International Journal of Scientific and 

Research Publications, vol. 3(3), pp. 21–23, 2013.  

[6] A. Haider, M. Arsalan, M. B. Lee, M. Owais, T. Mahmood, H. Sultan and K. R. Park, "Artificial Intelligence-based computer-

aided diagnosis of glaucoma using retinal fundus images," Expert Systems with Applications, vol. 207(C), 117968, 2022.  



Foundation University Journal of Engineering and Applied Sciences, Vol. 4, Issue 1.     25 

Ijaz et al. “Glaucoma Detection using Fundus Images by Extracting Localized Disc Features” 

[7] H. N. Veena, A. Muruganandham and T.S. Kumaran, "A novel optic disc and optic cup segmentation technique to diagnose 

glaucoma using deep learning convolutional neural network over retinal fundus images," Journal of King Saud University-

Computer and Information Sciences, vol. 34(8), pp. 6187–6198, 2022.  

[8] Y. Hatanaka, Y. Nagahata, C. Muramatsu, S. Okumura, K. Ogohara, A. Sawada, K. Ishida, T. Yamamoto and H. Fujita, 

"Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images," In 

Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2014, 

pp. 126–129.  

[9] A. Chakravarty and J. Sivswamy, "A deep learning based joint segmentation and classification framework for glaucoma 

assesment in retinal color fundus images," arXiv preprint arXiv:1808.01355, 2018. 

[10] R. Zhao, W. Liao, B. Zou, Z. Chen and S. Li, "Weakly-supervised simultaneous evidence identification and segmentation for 

automated glaucoma diagnosis," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33(1), pp. 809–816, 

2019.  

[11] C. Muramatsu, Y. Hayashi, A. Sawada, Y. Hatanaka, T. Hara, T. Yamamoto and H. Fujita, "Detection of retinal nerve fiber 

layer defects on retinal fundus images for early diagnosis of glaucoma," Journal of Biomedical Optics, vol. 15(1), pp. 016021–

016021, 2010. 

[12] J. I. Orlando, E. Prokofyeva, M. del Fresno and M. B. Blaschko, "Convolutional neural network transfer for automated 

glaucoma identification," In 12th International Symposium on Medical Information Processing and Analysis, SPIE 2017, vol. 

10160, pp. 241–250. 

[13] A. Almazroa, R. Burman, K. Raahemifar and V. Lakshminarayanan, "Optic disc and optic cup segmentation methodologies 

for glaucoma image detection: a survey," Journal of Ophthalmology, Article ID 180972, pp. 1–28, 2015.  

[14] S. Joshi, B. Partibane, W. A. Hatamleh, H. Tarazi, C. S. Yadav and D. Krah, "Glaucoma detection using image processing 

and supervised learning for classification," Journal of Healthcare Engineering, Article ID 2988262, pp. 1–12, 2022. 

[15] V. Elizabeth Jesi, S. Mohamed Aslam, G. Ramkumar, A. Sabarivani, A. K. Gnanasekar and P. Thomas, "Energetic glaucoma 

segmentation and classification strategies using depth optimized machine learning strategies," Contrast Media & Molecular 

Imaging, Article ID 5709257, pp. 1–11, 2021. 

[16] V. S. Mary, E. B. Rajsingh and G. R. Naik, "Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive 

survey," IEEE Access, vol. 4, pp. 4327–4354, 2016. 

[17] S. Sreng, N. Maneerat, K. Hamamoto and K. Y. Win, "Deep learning for optic disc segmentation and glaucoma diagnosis 

on retinal images," Applied Sciences, vol. 10(14), pp. 1–19, 2020. 

[18] M. Tabassum, T. M. Khan, M. Arsalan, S. S. Naqvi, M. Ahmed, H. A. Madni and J. Mirza, "CDED-Net: Joint segmentation 

of optic disc and optic cup for glaucoma screening," IEEE Access, vol. 8, pp. 102733–10274, 2020. 

[19] M. M. R. Krishnan and O. Faust, "Automated glaucoma detection using hybrid feature extraction in retinal fundus images," 

Journal of Mechanics in Medicine and Biology, vol. 13(1), pp. 1350011–1350032, 2013. 

[20] Q. Abbas. "Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning,"  International 

Journal of Advanced Computer Science and Applications, vol. 8(6), pp. 41–45, 2017.  

[21] H. Ahmad, A. Yamin, A. Shakeel, S. O. Gillani and U. Ansari, "Detection of glaucoma using retinal fundus images," In 

Proceedings of International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), IEEE, 

2014, pp. 321–324. 

[22] A. C. Thompson, A. A. Jammal, S. I. Berchuck, E. B. Mariottoni and F.A. Medeiros, "Assessment of a segmentation-free 

deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans," JAMA Ophthalmology, vol. 

138(4), pp. 333–339, 2020.  

[23] W. Liao, B. Zou, R. Zhao, Y. Chen, Z. He and M. Zhou, "Clinical interpretable deep learning model for glaucoma diagnosis," 

IEEE Journal of Biomedical and Health Informatics, vol. 24(5), pp. 1405–1412, 2019. 

[24] J. Camara, A. Neto, I. M. Pires, M. V.  Villasana, E. Zdravevski and A. Cunha, "Literature review on artificial intelligence 

methods for glaucoma screening, segmentation, and classification," Journal of Imaging, vol. 8(2), p. 1–28, 2022. 

[25] A. O. Joshua, F. V. Nelwamondo and G. Mabuza-Hocquet, "Segmentation of optic cup and disc for diagnosis of glaucoma 

on retinal fundus images," In Proceedings of Southern African Universities Power Engineering Conference/Robotics and 

Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), IEEE, 2019, pp. 183–187. 

[26] F. Khan, S. A. Khan, U. U. Yasin, I. ul Haq and U. Qamar, "Detection of glaucoma using retinal fundus images," In 

Proceedings of 6th Biomedical Engineering International Conference, IEEE, 2013, pp. 1–5, 2013. 

[27] M. R. K. Mookiah, U. R. Acharya, C. K. Chua, L. C. Min, E. Y. K. Ng, M. M. Mushrif and A. Laude, "Automated detection of 

optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation," In Proceedings of the Institution of 

Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, vol. 227(1), pp. 37–49.  

[28] I. Qureshi, "Glaucoma detection in retinal images using image processing techniques: a survey," International Journal of 

Advanced Networking and Applications, vol. 7(2), p. 2705–2718, 2015.  



Foundation University Journal of Engineering and Applied Sciences, Vol. 4, Issue 1.     26 

Ijaz et al. “Glaucoma Detection using Fundus Images by Extracting Localized Disc Features” 

[29] M. N. Bajwa, M. I. Malik, S. A. Siddiqui, A. Dengel, F. Shafait, W. Neumeier and S. Ahmed, "Two-stage framework for optic 

disc localization and glaucoma classification in retinal fundus images using deep learning," BMC Medical Informatics and 

Decision Making, vol. 19(1), pp. 1–16, 2019. 

[30] G. Du, X. Cao, J. Liang, X. Chen and Y. Zhan,  "Medical Image Segmentation based on U-Net: A Review," Journal of 

Imaging Science & Technology, vol. 64(2), pp. 020508-1–020508-12, 2020. 

[31] M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," In Proceedings of International 

Conference on Machine Learning, PMLR, 2019, pp. 6105–6114. 

[32] F. Guo, W. Li, J. Tang, B. Zou and Z. Fan, "Automated glaucoma screening method based on image segmentation and 

feature extraction," Medical & Biological Engineering & Computing, vol. 58, pp. 2567–2586, 2020. 

[33] R. Krishnan, V. Sekhar, J. Sidharth, S. Gautham and G. Gopakumar, "Glaucoma detection from retinal fundus images," In 

Proceedings of 2020 International Conference on Communication and Signal Processing (ICCSP), IEEE, 2020, pp. 0628–

0631.  


