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ABSTRACT-- The early diagnosis of breast tumor detection 

is the most significant research issue in mammography. 

Computer-aided diagnosis (CAD) is one of the highly 

essential methods to prevent breast cancer. This research 

work explored the effectiveness of deep-based pixel-wise 

segmentation models for low energy X-rays 

(mammographic imagery) to detect tumors in the breast 

region. For this purpose, various semantic segmentation 

models were incorporated into the experimental procedure. 

All the models were analyzed using the medical images 

dataset, which was gathered and annotated from one of the 

largest teaching hospitals in the Khyber Pakhtunkhwa 

province, known as Lady reading hospital. It is coordinated 

in cooperation with local health specialists, radiologists, 

and technologists. The comparative analysis of the 

incorporated segmentation techniques' performance was 

observed, selecting the most appropriate model for 

detecting tumors and normal breast regions. The 

experimental evaluation of the proposed models performs 

efficient detection of tumor and non-tumor areas in breast 

mammograms using traditional evaluation metrics such as 

mean IoU and Pixel accuracy. The performance of the 

semantic segmentation techniques was evaluated on two 

datasets (Cityscapes and mammogram). Dilation 10 

(global) performed the best among the four semantic 

segmentation models by achieving a higher pixel accuracy 

of 93.69%. It reflects the effectiveness of the pixel-wise 

segmentation techniques by outperforming other state-of-

the-art automatic image segmentation models. 

 

Keywords: Semantic segmentation, Breast tumor 

detection, Mammography. 

 

I. INTRODUCTION  

Breast cancer is the most common cancer disease for women 

across the globe. According to statistical analysis, a large 

number of women each year are diagnosed with breast 

cancer. Many women die from breast cancer, and a trend of 

increasing cases has been observed in recent decades. It is 

observed that breast cancer screening has reduced mortality 

by around 30% [1]. ]. If cancer is discovered between 

screenings, it is called interval cancer (IC). They mostly 

originate when a woman discovers a lump herself. Interval 

cancers are more aggressive and result in higher mortality 

than screen-detected tumors; therefore, we must find ways 

to improve the screening process and identify which 

women are at risk. Unfortunately, increased demand for 

screening resources comes when the supply of qualified 

radiologists is low, and their duties are over-stretched.  

To start with, success in developing a competent model for 

semantic segmentation on mammographies could help 

improve the process of generating and revising 

mammographies in hospitals. For example, it could be used 

for quality control, automatically detecting mammographies 

that need to be repeated due to low quality or artifacts. This 

research work helps recognize early signs of breast cancer 

perform semantic segmentation in mammographies. It 

focuses on the region of interest (tumor) and a non-region of 

interest (background) in the grayscale images. It discovers a 

reliable model to perform semantic segmentation on 

mammographic images after statistical analysis of the 

results. Success in this task could improve posterior 

detection and risk assessment networks' quality, ultimately 

increasing cancer control quality via mammographic 

images. The task of performing semantic segmentation on 

mammographic imagery is motivated by several factors.  

Secondly, semantic segmentation provides spatial 

information that could be potentially useful for cancer risk 

prediction networks. Cancer risk prediction is a relatively 

new path of investigation. It aims at predicting the risk of 

developing cancer in the future, given some medical data. 

Thus, a model attempting to predict the risk of developing 

cancer from mammographies could extract useful insight. It 

can be achieved by providing the semantic segmentation of 

mammography. In addition to the mammography itself, it 

focuses only on some areas of interest while ignoring the 

areas with no relevant information (like the image's 

background). Furthermore, a pre-trained model on semantic 

segmentation could boost the performance of current tumor 

classification/detection approaches, as proposed in [2]. 

Finally, it is a research question that, for the moment, 

remains unexplored. Up to the best of my knowledge, this 

research area is less focused on the literature reporting 

results on this specific task. Contrarily, most of the current 

research related to mammographies attempts to locate 

tumors directly. Most of them doesn't show the comparison 

of extensive experimental analysis to identify the 

outperformance of specific segmentation technique [3] [4] 

[5]. However, this work's scope of this study is limited to 
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determining the viability of adopting such models rather 

than their implementation as a market solution that is 

optimized and practical. Furthermore, during training, 

testing more models was emphasized over a thorough 

search of the hyper-parameter space. As a result, a more 

thorough hyper-parameter tuning could result in a marginal 

improvement in the performance measures described in this 

paper for any given model.  

The risk of cancer prediction in mammographies could 

provide a significant improvement in the early diagnosis of 

cancer. It can be achieved using semantic segmentation 

techniques to focus on the region of interest while ignoring 

the areas with no relevant information (like the image 

background). A pre-trained model may be utilized to 

diagnose current tumor classification using semantic 

segmentation with ground truth labeling. In [17], a deep 

convolutional neural network strategy is implemented to 

detect micro-calcification in mammograms obtained from 

three different manufacturers. The two CNNs were trained 

on the training set to detect the micro-classification 

candidates. The deep CNN was compared to the state-of-

the-art cascade classifier, where the CNN outperforms the 

cascade classifier. Xiaobo Lai et al. [18] presented the 

automatic segmentation method using a U-Net architecture 

to work on digital breast tomosynthesis (DBT) images. It 

achieved the automatic segmentation accuracy of breast 

masses. In [3, 24], a multi-scale convolutional neural 

network (CNN) is proposed and trained for mammogram 

classification. It is based on feature learning with a 

curriculum learning strategy to provide a labeled 

mammogram image as an outcome to facilitate early 

diagnosis. According to Deszo et al. [4], A CAD system is 

proposed, which outperforms the INbreast database 

classification. It is capable to automatically detect benign 

and malignant lesions in mammography on the object 

detection frameworks, Faster R-CNN. Li Shen [5] 

introduced an end-to-end training algorithm using a 

convolutional design that outperformed the previous 

methods. It is utilized for mammogram images to detect 

early breast cancer based on lesion annotations for training. 

Image level labels are applied for image classification. A 

DDSM is used as a benchmark to prove its good 

performance. 

In recent years, a few of the approaches utilizing semantic 

segmentation for specific tasks or subtasks, such as 

segmenting region-of-interest (ROI) [17] and mass 

segmentation [19, 20]. Some of the deep learning 

techniques in Mammography are highlighted in [21, 22, 23]. 

The other attempts show the high significance of designing 

approaches for detecting cancer status based on 

mammogram images to classify for possible cancer 

detection.  

Table 1 highlights the state-of-the-art literature about the 

common deep learning models, benchmarks, and their noted 

accuracy levels to highlight their performances. It is 

significant because of the relevance to the work in this 

paper.  
Table 1. Common deep learning benchmarks 

Reference Dataset Model Accur

acy 

mIoU 

(Cordts et al., 

2016)[6] 

Cityscap

e 

2016 

FCN32, 

FCN16, 

FCN8 

67.1 % 77.9% 

(Long et al., 

2015)[7] 

PASCAL 

VOC 

2012 

FCN32, 

FCN16 

FCN8 

94.3% 62.2% 

(Ronneberger 

et al., 

2015)[8] 

ISBI 

2015 

Challeng

e 

(PhC-

U373) 

U-Net 

(2015) 

92% 77.5% 

(Zhou et al., 

2018)[9] 

Liver 

Dataset 

(MICCA

I 2018 

LiTS 

Challeng

e) 

  

U-Net 

++ 

90.4% 82.90% 

(Yu & 

Koltun, 

2016)[10] 

VOC 

2012 

Dilation 

10 

71.3% 69.8% 

(Hamaguchi, 

2017)[11] 

  

Cityscap

es 

LFE+ 

Dilation 

63.6% 50% 

(Chen et al., 

2017)[12] 

Cityscap

es 2015 

DeepLa

bv3 

(ASPP 

Pooling

) 

79.30

% 

81.3% 

(Simon et al., 

2017)[13] 

CamVid 

2015, 

Gatech 

2015 

FCN-8 

Dense-

Net 

91.5% 66.9% 

(Nedra et al., 

2018)[14] 

Drive 

2012 

FCN32 91% 64% 

(Lin et al., 

2016)[15] 

PASCAL 

VOC 

2012 

FCN 71.5% 53.9% 

(Badrinarayan

an et al., 

2015)[16] 

Cam-Vid 

road 

scenes 

dataset 

SegNet, 

FCN 

90.40

% 

60.10% 

 

II. PROPOSED SEGMENTATION MODEL  

Many different neural network architectures have been 

proposed in recent years to tackle semantic segmentation 

within the scope of deep learning. It is intended to use some 

of the most relevant ones to be trained in segmenting 

mammographic imagery. In this work, semantic segmentation 

is performed to detect the tumor and non-tumor regions in 

breast mammograms. The positive feature of the Cityscape 

benchmark is that it can perform semantically and object 

segmentation as well. It returns pixels with class labeling, and 

the objects (anatomical regions) are separately segmented. At 

first, the Cityscapes dataset is used to train the model. It is 

used for the semantic segmentation of the breast 

Mammogram dataset based on the ground truth annotations 

obtained from radiologists and clinical experts. The detail of 

the architecture of the models that have been considered are 

following; 

2.1 Fully Convolutional Network 

The Fully Convolutional Network (FCN) is a semantic 

segmentation model used to execute any images without 

using fully connected layers. At first, an encoder is used to 

obtain contextual information about an image. The encoder 

architecture with alternating sequences of 2 or 3 

convolutional layers with max-pooling layers is deployed. It 

is almost similar to VGG16 [7], except in the original 

VGG16 architecture, the convolutional layers are used 

instead of fully connected layers. Each of the convolutional 

operations is followed by the activation function as a rectified 

linear unit (ReLU). The details of the encoder architecture are 

described in table 2. Each layer of the network includes 

convolution strides, feature map dimensions, kernel sizes, and 

receptive fields. T input and output layers' sizes are based on 

calculations concerning the input patches of 256 x 256 pixels. 

It is the size initially used for FCN without any change. 

 



 

 
Table 2. FCN encoder architecture [7] 

 

Name: 

 

La

yer 

 

Ker

nel 

Size 

 

Stri

de 

 

Padd

ing 

 

Inp

ut 

Siz

e 

 

Out

put 

Size 

Inpu

t 

Feat

ure 

Map

s 

Output 

Featur

e Maps 

 

Recep

tive 

Field 

conv1

_1 
1 3 1 

SAM

E 
256 256 3 64 3 

conv1

_2 
2 3 1 

SAM

E 
256 256 64 64 5 

max_p

ool1 
3 2 2 

SAM

E 
256 128 64 64 6 

conv2

_1 
4 3 1 

SAM

E 
128 128 64 128 10 

conv2

_2 
5 3 1 

SAM

E 
128 128 128 128 14 

max_p

ool2 
6 2 2 

SAM

E 
128 64 128 128 16 

conv3

_1 
7 3 1 

SAM

E 
64 64 128 256 24 

conv3

_2 
8 3 1 

SAM

E 
64 64 256 256 32 

conv3

_3 
9 3 1 

SAM

E 
64 64 256 256 40 

max_p

ool3 
10 2 2 

SAM

E 
64 32 256 256 44 

conv4

_1 
11 3 1 

SAM

E 
32 32 256 512 60 

conv4

_2 
12 3 1 

SAM

E 
32 32 512 512 76 

conv4

_3 
13 3 1 

SAM

E 
32 32 512 512 92 

max_p

ool4 
14 2 2 

SAM

E 
32 16 512 512 100 

conv5

_1 
15 3 1 

SAM

E 
16 16 512 512 132 

conv5

_2 
16 3 1 

SAM

E 
16 16 512 512 164 

conv5

_3 
17 3 1 

SAM

E 
16 16 512 512 196 

max_p

ool5 
18 2 2 

SAM

E 
16 8 512 512 212 

conv6

_1 
19 7 1 

SAM

E 
8 8 512 4096 292 

conv6

_2 
20 1 1 

SAM

E 
8 8 4096 4096 292 

scores 21 1 1 
SAM

E 
8 8 4096 

num_cl

asses 
292 

 

 

 

After passing through the encoder, which includes applying 

five max-pooling layers, the feature maps' spatial dimensions 

are 32 times smaller than the input image patch. Since 

semantic segmentation requires generating predictions with 

the same spatial dimensions as the input, it is necessary to up-

sample the encoded logits somehow. The solution proposed 

by Long et al. [7] involves defining three different sub-

models of FCN. These sub-models are trained sequentially, 

using the weights obtained from training the previous model 

as initial weights for the following one. The first sub-model, 

called FCN32, takes the feature maps of size 8 x 8 obtained 

after max_pool5 and applies a bilinear up-sampling step to 

resize them back to 256 x 256 pixels (the input size). The 

second sub-model, referred to in the original paper as FCN16, 

uses a transposed convolutional layer to learn the best 

strategy to upsample max_pool5 outputs from size 8 x 8 to 16 

x 16. The 16x16 upsampled version of max_pool5 and the 16 x 

16 output of max_pool4 are summed up and finally resized to 

256 x 256 pixels with a bilinear upsampling layer. The last 

sub-model on the decoding strategy is called FCN8 and goes 

a step further than FCN16. The result of summing the 16 x 16 

version of max_pool5 to the 16 x 16 output of max_pool4 is 

up-sampled again utilizing another transposed convolution to 

size 32x32. This 32 x 32 feature map is summed up with the 

32x32 output of max_pool3 and finally up-sampled to 256 x 

256 pixels with a bilinear up-sampling layer first 2 cases. 

Transposed convolutions are followed by ReLU activation 

functions, just like any other convolution on the model. The 

exact details of the decoder are shown in table 3. 

 
Table 3. FCN decoder architecture 
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M
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Fiel
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t_c

onv
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1 4 2 SA

M

E 

8 16 Nu

m 

Cla

sse

s 

Nu

m 

Cla

sse

s 

- 

t_c

onv

_2 

1 4 2 SA

M

E 

1

6 

32 Nu
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Cla

sse

s 

Nu

m 

Cla

sse

s 

- 

 

During training, FCN32 will be initialized using VGG16 

ImageNet pre-trained weights. Following FCN16 will be 

trained using FCN32 weights as initial weights. Finally, FCN8 

will be initialized with FCN16 weights, trained, and used for 

inference. 

 

2.2 U-Net 

The U-Net [8] is a Semantic segmentation model that follows 

an encoder-decoder architecture. The name U-Net comes 

from the fact that the encoder and the decoder are symmetric. 

It is helpful to identify the region of interest. The encoding 

path, which aims to capture the image's context information, 

resembles most image classification models, alternating 

between convolutions and max-pooling operations. The 

encoder's specific details are defined in table 4, where input 

and output layer sizes are calculated using 572 x 572 pixels. 

The decoding path tries to retrieve localization information 

lost during pooling operations. It follows an architecture 

symmetric to the encoding path but replacing max-pooling 

steps with transposed convolutions. Besides, at several points 

along the decoding path, the feature maps are concatenated to 

the ones coming from the same stage at the encoder before 



 

proceeding.  
Table 4. U-Net encoder architecture 

 

Name: 

 

Lay

er 

 

Ker

nel 

Size 

 

Stri

de 

 

Padd

ing 

 

Inp

ut 

Siz

e 

 

Out

put 

Size 

Inpu

t 

Feat

ure 

Map

s 

Out

put 

Feat

ure 

Map

s 

 

Recep

tive 

Field 

convl_

1 

1 3 1 VAL

ID 

572 570 3 64 3 

convl_

2 

2 3 1 VAL

ID 

570 568 64 64 5 

max_p

ool1 

3 2 2 VAL

ID 

568 284 64 64 5 

conv2_

1 

4 3 1 VAL

ID 

284 282 64 128 10 

conv2_

2 

5 3 1 VAL

ID 

282 64 128 128 14 

max_p

ool2 

6 2 2 VAL

ID 

280 140 128 128 16 

conv3_

1 

7 3 1 VAL

ID 

140 138 128 256 24 

conv3_

2 

8 3 1 VAL

ID 

138 136 256 256 32 

max_p

ool3 

9 2 2 VAL

ID 

136 68 256 512 36 

conv4_

1 

10 3 1 VAL

ID 

68 66 512 512 52 

conv4_

2 

11 3 1 VAL

ID 

66 64 512 512 68 

max_p

ool4 

12 2 2 VAL

ID 

64 32 512 1024 76 

conv5_

1 

13 3 1 VAL

ID 

32 30 1024 1024 108 

Conv5

_2 

14 3 1 VAL

ID 

30 28 1024 1024 140 

 

It is important to note that U-net convolutions are not padded. 

This is why the decoder's output size is 388 x 388, 

corresponding to the 388x388 central patch of the input 

image. Furthermore, each convolution or transposed 

convolution along the network is followed by a rectified linear 

unit (ReLU) activation function. 

2.3 Dilation 10 

Unlike the preceding models, the dilation10 [10] model does 

not use an encoder-decoder architecture. It can be separated 

into two distinct components, however: the front-end module 

and the context module. Like an encoder, the front-end 

module is designed to extract the "what" information from the 

images. Encoder architectures, like image classifiers, 

typically alternated convolutional layers with max-pooling 

operations to provide a field of view that covered the entire 

image or a substantial chunk of it—however, the spatial 

dimensions after the design are much less than the input size. 

The Dilation10 model eliminates a number of the maximum 

pooling operations. For compensation, the dilation of 

posterior convolutions is doubled by two after each 

eliminated max-pooling. This method maintains the same 

field of view as traditional encoders while decreasing the 

amount of detailed information lost during pooling processes. 

Table 5 shows the dilation10 front module, which is based on 

VGG16. The crop sizes utilized in the various training phases 

were used to calculate the input and output feature map sizes. 

For the first, second, and third training stages, the crop sizes 

are 632 × 632 pixels, 1024 x 1400 pixels, and 1400 x 1400 

pixels, respectively. 

Because spatial dimensions are still very big after the front 

module due to the suppression of some pooling steps, an 

alternative technique to an up-sampling decoder can be used. 

Dilation10, in particular, employs a module that employs a 

series of dilated convolutions with increasing dilation factors. 

This design allows for the systematic aggregation of multi-

scale contextual data without sacrificing resolution. Table 6 

shows the architecture of the context module in more detail. 

The sizes of the input and output feature maps were 

calculated based on the size obtained at the front module's 

end. As previously stated, the dilation10 network is trained in 

stages. Network training, in particular, is divided into three 

stages. Only the front module is trained in the first step. The 

entire network (front module + context module) is formed in 

the second stage of the training process. The weights in the 

front section, on the other hand, are frozen, and only the ones in 

the context module are modified. The training process 

concludes with a final stage in which the entire network is 

trained without any frozen variables. A rectified linear unit 

(ReLU) activation function follows all convolutions in the 

network.  

 
Table 5. Dilation10 front module architecture 
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Pad
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g 

 

Dil

atio
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Size 

 

Outpu
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ut 
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e 
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ps 

Outp

ut 

Feat

ure 

Maps 

 

Rec

epti

ve 

Fiel

d 

conv

1_1 

1 3 1 SA

ME 

1 632/10

24/140

0 

632/10

24/140

0 

3 64 3 

conv

1_2 

2 3 1 SA

ME 

1 632/10

24/140

0 

632/10

24/140

0 

64 64 5 

max_

pool1 

3 2 2 SA

ME 

1 632/10

24/140

0 

316/51

2/700 

64 64 6 

conv

2_1 

4 3 1 SA

ME 

1 316/51

2/700 

316/51

2/700 

64 128 10 

conv

2_2 

5 3 1 SA

ME 

1 316/51

2/700 

316/51

2/700 

128 128 14 

max_

pool2 

6 2 2 SA

ME 

1 316/51

2/700 

158/25

6/350 

128 128 16 

conv

3_1 

7 3 1 SA

ME 

1 158/25

6/350 

158/25

6/350 

128 256 24 

conv

3_2 

8 3 1 SA

ME 

1 158/25

6/350 

158/25

6/350 

256 256 32 

conv

3_3 

9 3 1 SA

ME 

1 158/25

6/350 

158/25

6/350 

256 256 40 

max_

pool3 

10 2 2 SA

ME 

1 158/25

6/350 

79/128

/175 

256 256 44 

conv

4_1 

11 3 1 SA

ME 

1 79/128

/175 

79/128

/175 

256 512 60 

conv

4_2 

12 3 1 SA

ME 

1 79/128

/175 

79/128

/175 

512 512 76 

conv

4_3 

13 3 1 SA

ME 

1 79/128

/175 

79/128

/175 

512 512 92 



 

dil_c

onv5

_1 

14 3 1 SA

ME 

2 79/128

/175 

79/128

/175 

512 512 124 

dil_c

onv5

_2 

15 3 1 SA

ME 

2 79/128

/175 

79/128

/175 

512 512 156 

dil_c

onv5

_3 

16 3 1 SA

ME 

2 79/128

/175 

79/128

/175 

512 512 188 

dil_c

onv6

_1 

17 7 1 SA

ME 

4 79/128

/175 

79/128

/175 

512 4096 380 

conv

6_2 

18 1 1 SA

ME 

1 79/128

/175 

79/128

/175 

409

6 

4096 380 

score

s 

19 1 1 SA

ME 

1 79/128

/175 

79/128

/175 

409

6 

num_

classe

s 

380 

 

 
Table 6. Dilation10 context module architecture 
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2.4 Deep Lab v3 

The Deep Lab v3 semantic segmentation system [12] is an 

approach that, just like dilation10, moves away from the 

Encoder-Decoder architecture by limiting the number of 

downsampling operations used encoding path. Similar to 

dilation10, it achieves a field of view comparable to models 

with a higher amount of max-pooling layers using atrous 

convolutions with increasing dilation factors. The feature 

extraction path is also based on a reference image 

classification model pre-trained on the ImageNet dataset. 

However, instead of using VGG like the previously described 

models, the authors of deep lab v3 use a ResNet-based 

architecture. In [12], the author experiments with residual 

networks with a different number of layers. In this research 

work, the network implemented is the one with 18 layers, the 

architecture of which can be found in figure 1. 
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Fg. 1. ResNet architecture [12] 

 

The only difference to the original ResNet implementation is 

that the convolutions found in the last two blocks (block3 and 

block4) are replaced by atrous convolution with dilation rates 

2 and 4, respectively. With these changes, the output size is 

only eight times smaller than the input size, and the output is 

16 times smaller, and therefore only the final block contains 

dilated convolutions. 

One of the main differences for dilation10 is the module's 

architecture added at the end of the encoding path. This model 

employs spatial pyramid pooling to capture context 

information. With some similarities with the inception 

module [11], this module combines several parallel atrous 

convolution layers with different rates to capture multi-scale 

information. Figure 1 describes the architectural details of the 

spatial pyramid module. The input size used by the paper 

authors and also for the experiments in this research work is 

769 x 769 pixels. Thus, input and output sizes in figure 1 are 

computed for 96, the feature map size at the beginning of the 



 

spatial pyramid pooling module. 

A rectified linear unit (ReLU) activation function follows all 

convolutions in the network. Finally, the original model 

includes batch normalization layers [12] along with the 

network. However, due to memory constraints, the mini-batch 

used in this work during training was of size 2. Therefore, 

batch normalization layers were replaced by group 

normalization layers [25], whose performance is not affected 

by the small batch size. 

III. EXPERIMENT 

 The experiment is performed in this work on the two 

datasets, which are the Cityscapes (benchmark) and a breast 

mammogram dataset. The Cityscape benchmark is chosen 

for the experiment because it can achieve class labeled 

pixels for semantic segmentation of the anatomical regions 

separately and object segmentation. The Lady reading 

hospital is one of the largest hospitals in the province in 

Pakistan. A large corpus of mammography data access was 

granted to train the models obtained from the local 

population, recorded between 2011 and 2019. However, 

none of the screenings had pixel-wise annotations. 

Consequently, the annotations were created under 

authorized expert radiologists, technologists, and other 

clinical experts. 

 

3.1 Dataset 

3.1.1 Cityscapes Dataset 

A prevalent semantic segmentation benchmark called 

Cityscapes [6] dataset was used to train and test the model. 

The images are about the same size as those of the 

Mammography dataset in the Cityscapes dataset.  Moreover, 

papers on semantic segmentation in the literature also report 

the performance of the Cityscape dataset, which has proved 

very helpful in validating the model's implementation.  

Fig. 2. Cityscapes sample images. [6] 

 

According to the authors, classes were selected based on 

their frequency, relevance from an application point of 

view, practical considerations regarding the effort to 

annotate, and compatibility with existing datasets.  

 

3.1.2 Mammography dataset 

The Mammography dataset is a medical dataset composed of 

100 subjects (high-resolution grayscale images) of 

mammography screenings. Each subject is an image and is 

replicated ten times using different data augmentation 

techniques. So the total image amount is 1000. Annotations 

were generated by clinical experts of the local medical 

teaching institute as binary pixel-wise maps for different 

anatomical regions. It was mainly categorized into two 

regions the region of interest "tumor and non-tumor region. 

QuPath, a software application specifically designed for 

bioimage analysis, was used for the task [26].  

The ground truth, labeling, and segmented comparisons are 

made based on two classes' tumor and non-tumor regions. 

The detailed descriptions of all the anatomical areas of 

mammography are shown in table 7;  

Table 7. Classes and anatomical regions in  

 

The ranking above indicates the different anatomical regions 

in the breast mammogram. In extension to this work, for the 

semantic segmentation of all the anatomical regions, the 

pixels should superpose other pixels when merging the binary 

maps into single pixel-wise annotations. All binary maps 

except calcifications, text, nipple and auxiliary lymph nodes 

can be smoothed using a Gaussian filter at merging time. It is 

usually performed to avoid sudden transitions in the 

annotations.  

One of the main challenges with this dataset is that it is very 

imbalanced. Some anatomical regions, such as the background 

or mammary gland, have a much higher presence than others. 

It is necessary to create a dataset composed of crops obtained 

from the original images sampled to mitigate the imbalance 

problem to prevent model training hurdles. Several crop 

datasets with different crop sizes may be generated from the 

original high-resolution images to train different models that 

require different input sizes. Crop sizes used to generate the 

datasets are 256 x 256, 700 x 700, 900 x 900 and 1500 x 1500 

pixels.  

Thus, to create a (more) balanced dataset containing crops of 

a given size x, take each image from the original dataset, and a 

list of the generated unique labels. Then, categories mammary 

gland and background are to be removed from the unique 

label list because one of the two will always be present in any 
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crop generated. From the remaining labels, one is to be 

selected randomly using a uniform distribution. A pixel of the 

selected category is to choose randomly with a uniform 

probability to use as the new crop center.  

 

3.2 Data Augmentation 

The augmentation is achieved by applying image processing 

practices, e.g., rotation, smoothing, mirror effect, sharpening, 

noise addition, contrast enhancement, etc. The total 

augmented dataset consists of 1000 images. The replicated 

samples are displayed in figure 4 below.  

 

 
Fig. 4. Image Augmentation replicated samples 

 

3.3 Input Pipeline 

For all the experiments performed in this work, a unified 

input pipeline was employed for each of the datasets. For the 

Cityscapes dataset, which contains RGB images, a random 

horizontal flipping operation was first applied with a 

probability of 0.5. Following, with probabilities of 0.5, 

random distortions of the saturation, the brightness, and the 

contrast of the images were employed. Finally, a random crop 

of the desired size (depending on the network to be trained) 

was generated and normalized to have values between 0.5 

and 0.5. For the Mammography dataset, the crop dataset of 

sufficient size to cover the input size of the network was 

trained with the crop dataset of sufficient size to cover the 

network's input size. The network was trained with a crop 

dataset of adequate size to cover the network's input size. The 

grayscale images were transformed into RGB images with a 

Tensorflow function. Data augmentation was limited in this 

case to random horizontal flipping and random contrast 

distortion; both applied with probabilities of 0.5. 

 

3.4 Training Procedure 

Stochastic Gradient Descent (SGD) optimizer with 

momentum has been used to reduce the cross-entropy loss 

function. The loss function is used to measure each label's 

contribution, which is the weighted value in the percentage 

of a class label from a dataset. More specifically, if a ' 'label's 

class supposes x% of the labels in the dataset, its contribution 

to the loss function will be weighted by w = (1 — x/100). 

Also, early stopping have been used during training, with 

patience factor number of epoch without improvement 

before stopping) ranging from 20 to 50 depending on the 

time needed to train an epoch. Moreover, parameter tuning 

is adapted wherever required to reduce memory size, 

computational time, and maximum accuracy.  

The data split is beneficial, depending on the kind of 

classifier used. In our case, the image data are cross-

validated using the hold out technique with a percentage of 

70/30, where 70 % of the data is selected for model training 

randomly. While the remaining 30, which will be by default 

randomized used for model testing.  

 

3.5 Hyper-Parameters and options for models training   

The learning rate is adjusted to learn quickly, adapting to a 

high initial rate. It follows a schedule piecewise and reduces 

by a factor of 3 at every ten epochs. It gives a solution nearer 

to the local optimum with a dropout of learning rate. The 

validation data parameter is set to test the network's 

validation data at every epoch, and the 'ValidationPatience' is 

set as 4 for the early stop of data training with the 

convergence of validation accuracy to avoid training dataset 

overfitting issues. Batch size is kept as a mini with the 

specific value depending on the parameter tuning to minimize 

memory use during the training phase. The batch size 

depends on the power capacity of the available system. 
Table 8. Experimental Parameters for Dilation 10 

Option Parameters 

Optimizer SGDM 

Learn Rate Schedule Piecewise 

Learn Rate Drop Period 10 

Learn Rate Drop Factor 0.3 

Momentum 0.9 

Initial Learn Rate 0.0001 

L2 Regularization 0.005 

Validation Data Yes 

Max Epochs 100 

Mini Batch Size 64 

Shuffle Every-epoch 

Verbose Frequency 10 

Validation Patience 4 

 

 

IV. RESULTS EVALUATION 

 

4.1 Cityscapes results 

All the intentional models have been implemented from 

scratch, including the current model. Thus, it is an important 

step to check the validity against a standard benchmark 

dataset. The following table shows the results obtained on 

the Cityscapes dataset. 
Table 9. Results on the validation dataset 

Model Pixel 

accuracy 

Mean 

IoU 

accuracy 

Mean per class  

accuracy 

CN32 91.84 57.35 66.59 

FCN16 92.88 59.25 67.86 

FCN8 92.57 59.01 67.96 



 

U-Net 91.81 58.87 68.86 

Dilation10 

- Front 92.98 62.94 72.78 

Dilation10 

– Context 95.37 63.29 75.16 

Dilation10 

– Global 96.09 67.87 79.05 

DeepLab 

v3 + 

ResNet 93.97 63.75 74.53 

 

 

 
Fig. 5. Cityscapes Dataset Validation Accuracy. 

 

4.2 Breast Mammogram results 

After the validity check for implementation, the next step is 

to implement it against the Mammography dataset. The 

results of the validation dataset are reported below in table 10 

and the column charts. 

 
Table 10. Results on the validation dataset 

Model Pixel 

accuracy 

Mean IoU 

accuracy 

Mean per 

class  

accuracy 

FCN32 80.37 40.06 49.20 

FCN16 78.90 41.75 53.13 

FCN8 78.17 45.12 57.03 

U-Net 80.49 43.47 53.78 

Dilation10 - 

Front 93.03 47.65 60.74 

Dilation10 - 

Context 93.46 50.26 64.39 

Dilation10 - 

Global 93.69 57.91 67.97 

DeepLab v3 

+ ResNet 92.17 51.34 62.01 

 

The proposed model is first trained on the Cityscape dataset 

and is then applied to the mammogram. The ground truth is 

added from the clinical experts to generate semantic 

annotations of breast mammograms. Various classes have 

been defined for mammography labeling and classification. 

 

 
 

Fig. 6. Breast Mammogram Dataset Validation Accuracy 

4.3 Visual Results 

On a newly proposed medical dataset of mammography 

screenings, the performance of state-of-the-art semantic 

segmentation deep learning models is examined. All the 

reference models such as FCN with three variants (FCN 32, 

FCN 16, and FCN 8), U-Net, Deep Lab v3, Dilation 10 

(context, front, global) are re-implemented and validated 

first on the benchmark dataset Cityscapes. The new medical 

image corpus for breast mammograms was collected and 

annotated to show that it is possible to boost segmentation 

performance by training the models in the classical training 

framework. The details of the visual results for the semantic 

segmentation techniques are shown in Figure 7 below 

shows that image (a) is the original image, consisting of a 

tumor region. Image (b) is an annotated image. The 

annotation/ground truth labeling is performed with 

radiologist collaboration. Image (c) is the binary mask of 

the ground truth labeled region. The image (d) consists of a 

segmented mask acquired by applying the dilation 10 

(global) semantic segmentation model. 
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Fig. 8. (a) Ground Truth Mask, (b) Dilation Segmented Mask, (c) 

DeepLab-v3 Segmented Mask, (d) FCN Segmented mask, and (e) 
U-Net Segmented Mask. 

  

 

In the above figure 8, the image (a) is the ground truth 

masked by the clinical expert, the image (b) is obtained 

using Dilation 10 (global) segmentation where it can be 

observed that the tumor is little under-segmented, the image 

(c) is the segmented image of DeepLab-v3 which seems to 

be bit over-segmented, the image (d) is achieved by 

applying FCN, and in the last image (e) the segmentation is 

performed using U-Net semantic segmentation model. The 

(d) and (e) are too much over-segmented, so from the image 

above, it can be analyzed that Dilation 10 (global) and 

DeepLab-v3 performed the best in tumor regions 

segmentation. 

V. CONCLUSION 

The two annotated datasets, such as Cityscapes a benchmark 

and a local medical imaging dataset Breast mammogram, 

train semantic segmentation algorithms. The FCN semantic 

segmentation model with its three variants FCN 32, FCN 16, 

FCN 8, U-Net, Dilation 10 (front, context, global) and 

DeepLab-v3 (network-based on ResNet) are implemented. A 

competent segmentation model for mammographies is 

highlighted after the detailed experimental analysis. The 

Dilation 10 (global) outperform compared to other 

segmentation models with a higher pixel accuracy of 93.69 

%. In this work, the goal is limited to recognize the region of 

interest (tumor) and a non-region of interest (background) in 

the grayscale images. It may be extended in the future to 

segment the other anatomical regions associated with breast 

mammograms accurately.  
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