
Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

 A Word Embedding Model for Fault Localization

using Bug and Software Change Repositories

Aqib Rehman

Computer Science Department

Quaid-i-Azam University

Islamabad, Pakistan

a.rehman@cs.qau.edu.pk

Muddassar Azam Sindhu

Computer Science Department

Quaid-i-Azam University

Islamabad, Pakistan

masindhu@qau.edu.pk

Onaiza Maqbool

Computer Science Department

Quaid-i-Azam University

Islamabad, Pakistan

onaiza@qau.edu.pk

Abstract—Software developed and then deployed in a real

world environment is inevitable to exhibit some undesirable

behavior. Therefore, developers need to provide maintenance

facilities to enable the bugs causing the undesirable behavior to

be fixed. However, prior to fixing the bug, the suspicious part

of the code needs to be identified. For this purpose, they

usually perform fault localization. This can be done manually

as well as automatically. Several techniques exist in the

literature for fault localization. However, most of them are

static based techniques because they do not depend on a

specific programming language along with the possibility to

work on underdeveloped software and some other benefits.

These techniques are largely based on lexical matching of

terms which leads to mismatch of terms, large precision value

because of limited vocabulary of a programming language and

some techniques consider the semantics but it is

computationally expensive to localize faults through this. In

this paper we have proposed a fault localization technique

which is based on the machine learning concept of word

embedding. Our proposed approach aims at looking at the

relatedness between the bug terms and source code artifact.

We mined the bug repositories and software change

repositories to train the word embedding model on the mined

repositories data. On the arrival of a new bug, the cluster of

the bugs from the model is searched and the files from the

software change repositories are retrieved which are used for

fixing those bugs. We have compared the results of our

approach with the latest technique proposed in year 2018

Pointwise Mutual Information (PMI) and Normalized Google

Distance (NGD) which consider the context and also with

existing lexical techniques Vector Space Model (VSM) and the

semantic based method Latent Semantic Indexing (LSI). We

have used the benchmark dataset “MoreBugs” which has been

widely used in this domain. The results show that our approach

outperforms other techniques.

Keywords—word embedding, fault localization, bug

repositories, IR

I. INTRODUCTION

In the recent decades there has been an enormous shift in
the world of technology. Humans are relying more and more
on machines to perform their day to day activities. Machines
are helping humans in mundane tasks like opening doors to
critical tasks like flying airplanes. Depending on the task
that needs to be performed, software is installed to make the
machines work. Software is programmed in different
languages and its complexity depends on the underlying
computation that it needs to perform. It can be as simple as
an addition software or as complex as a software for a robot.

With the increasing demands of software in the market, a
great amount of importance is placed on its quality [1].
Software development companies aim at creating software
that is of the best possible quality. This not only refers to the
interface and response time of a software but also to the low
error rate of a software. The ideal scenario when creating a
software is to create an error free software but this is not
possible because it is inevitable that a software might depict
undesirable behavior at some point. To tackle this problem a
software is tested at every stage of development. If an error
is not caught at an early stage of development, then chances
are that over time it would become difficult to resolve it and
the cost to fix it would also increase drastically.

Despite this error discovery in a software does not end
when a software is deployed in the real world environment.
The developers have to interact with the end- users during
software maintenance for removal of possible defects. On
interaction with the software, users can come across
situations which might lead to a software behaving
undesirably. In order to keep the users trust and satisfaction
level, developers have to provide maintenance facilities to
the users through which the users can convey their problems
to the developers and the developers in turn have to provide
solutions. The task of resolving a problem is relatively easy
for the developers as compared to locating the actual part of
code in the software which is causing the problem. This task
of locating an error is called fault localization.

Researchers have documented various techniques
through which fault localization can be achieved. The
techniques for fault localization can be divided into two
groups: static based techniques and dynamic based
techniques. Static based techniques have some advantages
over dynamic based techniques as they are independent of
programming language and they do not require a software to
be completely developed. Till now the majority of ways to
perform static based techniques incorporate lexical
matching. Lexical matching deals with the similarity
between bug reports terms and artifacts of source code. The
terms of a programming language are limited so this leads to
less terms being matched with the reports and it causes the
vocabulary mismatch problem. Also, due to limited terms of
programming language it leads to large precision value. All
of this leads to low accuracy. Apart from this there are some
semantic based techniques available like LSI [2] and LDA
[3] but they are computationally expensive [4]. LSI is a
technique which calculate the similarity of a term with a
unstructured text. It constructs the matrix of x*y where x is
the terms and y is the documents containing text. LDA finds

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

out the word-topic probability distribution and topic-
document distribution. Word-topic probability distribution
includes the probability of every word of vocabulary
belonging to topic of model. Topic-document probability
distribution includes all the documents of document
collection belonging to topic of model. In [4] authors have
introduced a method to capture relatedness between bug
terms and source code. They have also given a comparison
with the existing static and dynamic based techniques and
concluded that their proposed approach is better.

In this paper we have taken motivation from [4] and
proposed a word embedding model which will find similar
concepts based on their relatedness and group them together
in the form of clusters. Word embedding is a technique of
machine learning. We have mined the bug repositories. And
trained the word embedding model with the bug repositories
data. Now on arrival of a new bug, the terms of the bug
report will be provided to the model as a testing and the
similar and related terms in the form of clusters will be
retrieved from the model. Based on these terms suspicious
files containing the bug would be suggested.

Rest of the paper is organized as follows: Section II

details the related work. After that in Section III We have

explained our proposed approach for fault localization

through word embedding. In Section IV we have

documented the results of our experiments and explained

our insights. Finally, Section V concludes our paper and

gives future directions in which our proposed approach can

be used.

II. RELATED WORK

Fault localization is the task of locating suspicious part
of the software which is causing the bugs after an
undesirable behavior has been detected. Users report the
undesirable behavior and now it is the task of the developers
to provide assistance in getting it resolved. Developers have
been providing this facility of resolving bugs ever since the
existence of software. They have used various techniques
which have evolved over the years.

In the beginning, developers used to make use of print
statements in order to locate the faulty part of the code.
After that break points were added and the code was
debugged to narrow down the faulty part of code. These
techniques required a lot of manual labor and consumed
more time [5]. With time the techniques for fault
localization were automated. This created a lot of ease and
helped us in locating bugs quicker than before. Furthermore,
the error rate was also reduced. These techniques can be
divided into two broad categories i.e. static based and
dynamic based. Dynamic based approaches require a
functional system to localize the faults. By executing the test
cases, the pass and fail traces are identified and through this
the faulty part of code is localized. In [6-11] authors have
used different modifications of dynamic based techniques.
In spite of all the work done researchers have placed a
greater focus on static based techniques because of their
advantage over dynamic based techniques. Static based
techniques can be use on a partially developed system, are
independent of programming language and do not require
the creation and execution of test cases. Our approach falls
in the category of static based technique so we have only
discussed static based approaches from the literature in
detail here.

In static based techniques different Information Retrieval
(IR) methods are used for fault localization. The
conventional methods are based on lexical matching [12].
The contents from the bug report which are reported by the
end user when he/she experiences an undesirable behavior
from the system is matched with source code artifacts.
Finally, the piece of code is suggested to the developer
which is faulty.

In [13] authors used the IR methods for finding the
traceability links between the source code and the different
documentation of the software. The terms of documentation
which are written in natural language (NL) are matched with
the source code artifacts. They considered the Vector Space
Model (VSM) and probabilistic model for that purpose.
They tested their approach on two subject systems amongst
which one is in C++ language and the other is in Java
language. The results show that the approach gives 100%
recall.

In [14] authors developed a system for a clinic. It takes

the image as an input and using the contents of that image

i.e. color, shape and texture the image is matched with the

previous images stored in the database and as a result the

same images are provided to the user.
In [15] authors proposed a method which suggest the

interesting elements to the developer by taking his/her
interested code elements. The method statically finds out the
elements of the source code and the elements are shown to
developer in a tree structure. From the elements the
developer selects the element of his/her interest and the
algorithm finds the fuzzy set of related elements of the
interest. The results show that the method helps in finding
the elements of interest of the code to developer which are
needed to be investigated.

In [16] authors used the IR method to recommend the
items to the user. They have found the last ‘w’ number of
visited pages from the user profile history. From the
founded pages the top ‘k’ terms are retrieved using the
content based filtering (CBF). And from these terms the ‘k’
queries are defined and against these queries the relevant
links are derived from the web. From the selected ‘k’ terms
the association rules are found using collaborative filtering
(CF). The combined results are shown to the user. The study
is conducted on a university website and the results show
that the performance of the approach is good.

In [17] authors used the IR method for fault localization
at character level instead of word level. They used the n-
gram based model which matched the terms of source code
with the bug report terms. It matched the combined terms of
source code which are written in camel case with the bug
report terms. It also provided the advantage of stemming as
it matches at character level. The results show that it
produces effective mean average precision (MAP).

In [18] authors proposed a method named “BugLocator”.
It firstly locates the previous similar bugs of a new bug from
the history using revised vector space model (rVSM). The
files are extracted which were modified for fixing the
previous bugs. On the basis of the similarity score the old
modified files are suggested to the developer. Th results
show that the method improves the old VSM, LDA, LSI and
SUM methods.

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

In [19] authors proposed a method “BLUiR” (Bug
Localization Using Information Retrieval). The method
finds out the elements from the source code i.e. class name,
method name, variable name. It then tokenizes the
identifiers and stores that information in the XML format.
Later it uses indexing for linking the tokens of XML file.
From the file the abstract syntax tree (AST) is found through
Eclipse Java development tool (JDT). The experiments are
conducted with 3,400 bugs and the results show that it
performs better than the state of art “BugLocator”.

In [20] authors proposed a method named “AmaLgam”.
It analyzed the version history which is used in google.
From the history past ‘K’ days commits are identified
containing the word “fix” or “bug”. From these commits
the changed files are retrieved. From the history the similar
bugs are identified using the “BugLocator” method
previously identified, and the files are retrieved which are
modified in order to fix the old previous bugs. It tokenizes
the source code into class name, method name and variable
name using the “BLUiR” method previously proposed.
From all the three components the results are combined and
suggested to the developer. Experiments are conducted on
four open source projects and the results show that it
improves 24% as compared to “BugLocator” and 16% as
compared to “BLUiR” using mean average precision (MAP)
value.

In the above discussed papers most of the papers are
based on lexical matching as conventional IR is based on
lexical matching while some have considered using the
semantic methods. In lexical matching the problem of
vocabulary mismatch occurs as the vocabulary of any
programming language is limited. Also, due to a lot of
repetition in the source code the precision value decreases
and as a result the accuracy of IR methods is very low.
Some are semantic based i.e. LDA, LSI but they are
computationally costly.

In [21] the authors proposed an information theoretic

based IR approach for fault localization which is based on

relatedness. Those methods are used namely Pointwise

Mutual Information (PMI) [22] and Normalized Google

Distance (NGD) [23] which keep in consideration the

context. The results show that the approach outperforms the

literature lexical matching based approaches Vector Space

Model (VSM), Jensen-Shannon Model (JSM), and the

semantic based method Latent Semantic Indexing (LSI).

III. PROPOSED APPROACH

In this paper we have proposed an IR based technique
which uses word embedding model for localizing faults.
Figure 1 shows our proposed approach. Firstly, we have
trained our word embedding model by historical bug data.
After that on arrival of a new bug, we have used our trained
word embedding model in two dimensions i.e. first, it gives
us all the similar terms against the bug terms and second it
gives us all the relevant terms to the bug terms. When
dealing with the similar terms the word embedding model
will provide similar terms and now using these terms we will
make combinations of the terms with the bug terms and
suggest files from the source code that it deems suspicious.
On the contrary when dealing with relevant terms the word
embedding model will provide relevant terms to the bug

terms and these relevant terms will be searched individually
from the source code and files will be suggested.

In the next subsections we will explain our proposed
approach in detail.

A. Training Section

1) Mining of Repositories

The training data for the word embedding model is mined

from the bug repositories. This data is served as an input to

the model after it is preprocessed.

2) Preprocessing

The preprocessing step involves tokenization, removal

of stop word and lemmatization.

 Tokenization:

In this step the bug data gets split into

terms which are called tokens. The bug title

and bug description terms are split on the

bases of space between them and later

compared with the source code terms.

 Removal of Stop Words:

Stop words are frequently used words that

are usually ignored when natural language data

is preprocessed. Commonly used stop words

are the, and, it, etc.

Therefore, after splitting the terms, the

remaining words are checked for stop words

and those terms are removed.

 Lemmatization:

Lemmatization shortens a word to a

common prefix while keeping in mind the

grammatical context.

Here the words from the previous step are

reduced to their respective lemmas.

After this the bug data is said to have been preprocessed

and ready for training the word embedding model.

3) Word Embedding Model

The preprocessed data form the bug repositories from the

previous step serves as an input for the word embedding

model. The word embedding model assigns different

weightages to the terms of the bug repository data. It keeps

in consideration the similarity and relatedness factor when

assigning weightage. The terms having higher similarity

would have a greater weightage as compared to terms that

do not have high similarity. For relatedness the terms which

are more likely to be related to each other would have a

higher weightage.

B. Testing Section

1) Arrival of bug

When a user interacts with a system it is bound to

encounter a bug at some point. On encountering a bug, they

report it by making a bug report. A bug report is a detailed

description of the users account of the undesirable scenario

that they have witnessed.

2) Preprocessing

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

After a bug report has arrived, its contents are

preprocessed by performing tokenization, removal of stop

words and lemmatization. We have discussed these steps in

detail earlier in Section III. Here also the same process

would be done for the newly arrived bug.

3) Word Embedding Model
We have used a trained word embedding model and have

already explained in detail in the previous subheading. In this
step the preprocessed bug data from the previous step
becomes an input for the trained word embedding model.
The model works on the preprocessed data and produces a
list of words based on comparison between the bug data and
the model’s trained data set. For our approach we have
obtained two different sets of words from the model

a) Similar Context terms

The first list of words is made up of similar terms to

the bug terms. For example, if the bug term is “memory”

then the word embedding model come up with terms which

are similar to memory like storage and RAM.

b) Relatedness Terms

The second list is made up of words which are related to

the input bug terms. For example, here for the same term

“memory” the word embedding model will come up with

related terms like overflow and underflow.

4) Selection of terms

From the words produced by the model, the top ten

words are considered for comparison with the source code

terms as researchers have declared the top ten words are the

most relevant words.1

1 https://pydata.org/code-of-conduct.html

5) Matching with source code

 In case of similar words list, all the combinations of the

similar bug terms are made and searched in the source code.

In contrast when considering the related bug terms list, the

terms of same topic are searched in the source code.

6) Sorting of Files

The files are sorted based on the amount of occurrence

of each term produced by the word embedding model.

7) Selection and Suggestion of Files

Finally, from the sorted files the top three files are the

ones that are supposed to contain the bug. These files are

declared as suspicious files.

IV. EXPERIMENTS, RESULTS AND EVALUATION

The experiments are conducted to validate our proposed

approach. We have performed experiments on “MoreBugs”

[24] dataset2 which is a benchmark data set and is widely

used in research of fault localization. The results are shown

in detail in the next subsections.

A. Performance of Proposed Approach

It is of utmost importance that our proposed approach

detects the bugs correctly. The number of correctly

identified bugs would directly reflect on its performance.

For this purpose, we have calculated the number of correctly

identified bugs by our proposed approach through the

 evaluation metrics of recall. Results indicate that our

proposed approach has more recall value.

As we have explained in Section III we have used our

word embedding model to obtain two different set of lists

i.e. similar terms and related terms. Here while observing

performance we have taken both those lists and calculated

2 https://engineering.purdue.edu/RVL/Database/moreBugs/

Figure 1 A Fault Localization Process Using Word Embedding Model

https://pydata.org/code-of-conduct.html
https://engineering.purdue.edu/RVL/Database/moreBugs/

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

their respective recall. Table I and Table II show our

performance of proposed approach using both the different

word lists.

Table I. Performance of Proposed Approach

Considering Similar Terms

System Average Recall

AspectJ 52%

Table II. Performance of Proposed Approach

Considering Related Terms

System Average Recall

AspectJ 76%

B. Research Questions

RQ1. Does our approach improve the performance of bug

localization?

In order to calculate the improvement made by our proposed

approach we have made comparison with the previously

proposed approaches in the literature. As we have discussed

in the Related Work section of our paper that the IR based

approaches are lexical based and some considered the

semantics. So we have made comparison with the Vector

Space Model (VSM), Latent Semantic Indexing (LSI) and

also the methods Pointwise mutual information (PMI),

Normalized Google Distance (NGD) which are proposed in

the 2018 paper from which we get motivation. The results

are shown in Table III.

Table III. Comparison of Proposed Approach with

Other Approaches

Approaches Average Recall

Proposed Approach

(with Similarity

Terms)

52%

VSM 22.5%

LSI 21.8%

PMI 45%

NGD 41.5%

RQ2. How many terms appear in a bug report on average

and what is the impact of bug report length?

In Table IV we have shown the average number of terms

that a bug report has. To confirm the effect of bug report

length we have calculated the results of our proposed

approach by considering bug title information and on the

other hand we have also calculated our results by

considering bug title and bug description information. Table

V gives an insight to our findings related to this. We can

conclude that if the length of bug report is greater than it

gives better recall but there will be a slight decline in

precision.

Table IV. Average Bug Report Length

System
Average length of

bug report

AspectJ 10

Table V. Impact of Bug Report Length

System

Proposed Approach

with Bug term

Proposed Approach

with Bug Term and

Bug Description

Average Recall Average Recall

AspectJ 76% 77.6%

RQ3. In which cases the proposed approach outperforms

others?

Our proposed approach would help in regards when the

vocabulary mismatch problem would occur. Using the

similar words that the word embedding model produces, we

can reach the part of the code that is more likely to contain

the bug. In addition, when related words are produced by

the word embedding model against the new arrival bug

term, they can be used to obtain all the terms from history

bugs related to it and help us in finding parts of source code

that might contain them. This widens our search results and

helps us in narrowing down the bug using the concept of

relatedness.

C. Why our Technique Works

Whilst performing fault localization using bug reports,

the user sometimes uses terms which are not directly used in

the source code. Therefore, fault localization becomes

difficult. Through our proposed approach we have found out

the related and similar bug terms from historical bug

repository’s data which helps us in narrowing down the

fault. Using similar and related terms to the ones in the bug

reports, we are able to identify the actual location of bug in

the source code.

V. CONCLUSIONS AND FUTURE WORK

Providing maintenance by localizing faults is an

important phase of software development. With the increase

in the complexity and size of software, there is need for

performing fault localization through efficient ways. In the

past many different techniques have been proposed in

literature. Most of these techniques are lexical and therefore

result in the vocabulary mismatch problem. Others are

semantic based and therefore are computationally

expensive.

In this paper we have proposed a word embedding model

which is trained on historical bug data and provides similar

and related terms suggestions for newly arrived bug terms.

We have validated our approach by using the MoreBugs

dataset and implemented it on AspectJ system. We have also

compared our proposed approach with existing techniques

and discovered that our proposed approach gives better

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

Foundation University Journal of Engineering and Applied Sciences (FUJEAS)

recall. In the future we will also incorporate software change

repositories with our proposed technique.

REFERENCES

[1] P. Ammann and J. Offutt, “Introduction to software testing”
Cambridge University Press, 2016.

[2] Shao, P., Smith, R. K., 2009. Feature location by ir modules and
call graph. In: Proceedings of the 47th Annual Southeast
Regional Conference. ACM, p. 70.

[3] Lukins, S. K., Kraft, N. A., Etzkorn, L. H., 2010. Bug
localization using latent dirichlet allocation. Information and
Software Technology 52 (9), 972-990.

[4] Khatiwada, S., Tushev, M. and Mahmoud, A., 2018. Just enough
semantics: an information theoretic approach for ir-based
software bug localization. Information and Software Technology,
93 pp. 45-57.

[5] Wong, W. E., & Debroy, V. (2009). A survey of software fault
localization (Vol. 9; Tech. Rep.).

[6] Renieres, Manos, and Steven P. Reiss. "Fault localization with
nearest neighbor queries." Automated Software Engineering,
2003. Proceedings. 18th IEEE International Conference on.
IEEE, 2003.

[7] Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund. "On the
accuracy of spectrum-based fault localization." Testing:
Academic and Industrial Conference Practice and Research
Techniques-MUTATION (TAICPART-MUTATION 2007).
IEEE, 2007.

[8] Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund.
"Spectrum-based multiple fault localization." Proceedings of the
2009 IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2009.

[9] Papadakis, Mike, and Yves Le Traon. "Using mutants to locate"
unknown" faults." Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on. IEEE,
2012.

[10] Le, Tien-Duy B., Ferdian Thung, and David Lo. "Theory and
practice, do they match? a case with spectrum-based fault
localization." 2013 IEEE International Conference on Software
Maintenance. IEEE, 2013.

[11] Ju, Xiaolin, et al. "HSFal: Effective fault localization using
hybrid spectrum of full slices and execution slices." Journal of
Systems and Software 90 (2014): 3-17.

[12] Baah, George K., Andy Podgurski, and Mary Jean Harrold.
"Causal inference for statistical fault localization." Proceedings
of the 19th international symposium on Software testing and
analysis. ACM, 2010.

[13] Antoniol, Giuliano, et al. "Recovering traceability links between
code and documentation." IEEE transactions on software
engineering 28.10 (2002): 970-983.

[14] Müller, Henning, et al. "A review of content-based image
retrieval systems in medical applications—clinical benefits and
future directions." International journal of medical informatics
73.1 (2004): 1-23.

[15] Robillard, Martin P. "Automatic generation of suggestions for
program investigation." ACM SIGSOFT Software Engineering
Notes. Vol. 30. No. 5. ACM, 2005.

[16] Khribi, Mohamed Koutheaïr, Mohamed Jemni, and Olfa
Nasraoui. "Automatic recommendations for e-learning
personalization based on web usage mining techniques and
information retrieval." Advanced Learning Technologies, 2008.
ICALT'08. Eighth IEEE International Conference on. IEEE,
2008.

[17] Lal, Sangeeta, and Ashish Sureka. "A static technique for fault
localization using character n-gram based information retrieval
model." Proceedings of the 5th India Software Engineering
Conference. ACM, 2012.

[18] Zhou, Jian, Hongyu Zhang, and David Lo. "Where should the
bugs be fixed? more accurate information retrieval-based bug

localization based on bug reports." Software Engineering
(ICSE), 2012 34th International Conference on. IEEE, 2012.

[19] Saha, Ripon K., et al. "Improving bug localization using
structured information retrieval." Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013.

[20] Wang, Shaowei, and David Lo. "Version history, similar report,
and structure: Putting them together for improved bug
localization." Proceedings of the 22nd International Conference
on Program Comprehension. ACM, 2014.

[21] Khatiwada, Saket, Miroslav Tushev, and Anas Mahmoud. "Just
enough semantics: an information theoretic approach for ir-
based software bug localization." Information and Software
Technology 93 (2018): 45-57.

[22] Church, Kenneth Ward, and Patrick Hanks. "Word association
norms, mutual information, and lexicography." Computational
linguistics 16.1 (1990): 22-29.

[23] Cilibrasi, Rudi L., and Paul MB Vitanyi. "The google similarity
distance." IEEE Transactions on knowledge and data
engineering 19.3 (2007).

[24] Rao, S., & Kak, A. (2013). morebugs: A new dataset for
benchmarking algorithms for information retrieval from
software repositories (Tech. Rep.). ECE Technical Reports.

[25] Wong, Chu-Pan, et al. "Boosting bug-report-oriented fault
localization with segmentation and stack-trace analysis." 2014
IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014.

