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Abstract—Software developed and then deployed in a real 

world environment is inevitable to exhibit some undesirable 

behavior. Therefore, developers need to provide maintenance 

facilities to enable the bugs causing the undesirable behavior to 

be fixed. However, prior to fixing the bug, the suspicious part 

of the code needs to be identified. For this purpose, they 

usually perform fault localization. This can be done manually 

as well as automatically. Several techniques exist in the 

literature for fault localization. However, most of them are 

static based techniques because they do not depend on a 

specific programming language along with the possibility to 

work on underdeveloped software and some other benefits. 

These techniques are largely based on lexical matching of 

terms which leads to mismatch of terms, large precision value 

because of limited vocabulary of a programming language and 

some techniques consider the semantics but it is 

computationally expensive to localize faults through this. In 

this paper we have proposed a fault localization technique 

which is based on the machine learning concept of word 

embedding. Our proposed approach aims at looking at the 

relatedness between the bug terms and source code artifact. 

We mined the bug repositories and software change 

repositories to train the word embedding model on the mined 

repositories data. On the arrival of a new bug, the cluster of 

the bugs from the model is searched and the files from the 

software change repositories are retrieved which are used for 

fixing those bugs. We have compared the results of our 

approach with the latest technique proposed in year 2018 

Pointwise Mutual Information (PMI) and Normalized Google 

Distance (NGD) which consider the context and also with 

existing lexical techniques Vector Space Model (VSM) and the 

semantic based method Latent Semantic Indexing (LSI). We 

have used the benchmark dataset “MoreBugs” which has been 

widely used in this domain. The results show that our approach 

outperforms other techniques. 

Keywords—word embedding, fault localization, bug 

repositories, IR 

I. INTRODUCTION  

In the recent decades there has been an enormous shift in 
the world of technology. Humans are relying more and more 
on machines to perform their day to day activities. Machines 
are helping humans in mundane tasks like opening doors to 
critical tasks like flying airplanes. Depending on the task 
that needs to be performed, software is installed to make the 
machines work. Software is programmed in different 
languages and its complexity depends on the underlying 
computation that it needs to perform. It can be as simple as 
an addition software or as complex as a software for a robot. 

With the increasing demands of software in the market, a 
great amount of importance is placed on its quality [1]. 
Software development companies aim at creating software 
that is of the best possible quality. This not only refers to the 
interface and response time of a software but also to the low 
error rate of a software. The ideal scenario when creating a 
software is to create an error free software but this is not 
possible because it is inevitable that a software might depict 
undesirable behavior at some point. To tackle this problem a 
software is tested at every stage of development. If an error 
is not caught at an early stage of development, then chances 
are that over time it would become difficult to resolve it and 
the cost to fix it would also increase drastically.  

Despite this error discovery in a software does not end 
when a software is deployed in the real world environment. 
The developers have to interact with the end- users during 
software maintenance for removal of possible defects. On 
interaction with the software, users can come across 
situations which might lead to a software behaving 
undesirably. In order to keep the users trust and satisfaction 
level, developers have to provide maintenance facilities to 
the users through which the users can convey their problems 
to the developers and the developers in turn have to provide 
solutions. The task of resolving a problem is relatively easy 
for the developers as compared to locating the actual part of 
code in the software which is causing the problem. This task 
of locating an error is called fault localization. 

Researchers have documented various techniques 
through which fault localization can be achieved. The 
techniques for fault localization can be divided into two 
groups: static based techniques and dynamic based 
techniques. Static based techniques have some advantages 
over dynamic based techniques as they are independent of 
programming language and they do not require a software to 
be completely developed. Till now the majority of ways to 
perform static based techniques incorporate lexical 
matching. Lexical matching deals with the similarity 
between bug reports terms and artifacts of source code. The 
terms of a programming language are limited so this leads to 
less terms being matched with the reports and it causes the 
vocabulary mismatch problem. Also, due to limited terms of 
programming language it leads to large precision value. All 
of this leads to low accuracy. Apart from this there are some 
semantic based techniques available like LSI [2] and LDA 
[3] but they are computationally expensive [4]. LSI is a 
technique which calculate the similarity of a term with a 
unstructured text. It constructs the matrix of x*y where x is 
the terms and y is the documents containing text. LDA finds 
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out the word-topic probability distribution and topic-
document distribution. Word-topic probability distribution 
includes the probability of every word of vocabulary 
belonging to topic of model. Topic-document probability 
distribution includes all the documents of document 
collection belonging to topic of model. In [4] authors have 
introduced a method to capture relatedness between bug 
terms and source code. They have also given a comparison 
with the existing static and dynamic based techniques and 
concluded that their proposed approach is better. 

In this paper we have taken motivation from [4] and 
proposed a word embedding model which will find similar 
concepts based on their relatedness and group them together 
in the form of clusters. Word embedding is a technique of 
machine learning. We have mined the bug repositories. And 
trained the word embedding model with the bug repositories 
data. Now on arrival of a new bug, the terms of the bug 
report will be provided to the model as a testing and the 
similar and related terms in the form of clusters will be 
retrieved from the model. Based on these terms suspicious 
files containing the bug would be suggested.  

Rest of the paper is organized as follows: Section II 

details the related work. After that in Section III We have 

explained our proposed approach for fault localization 

through word embedding. In Section IV we have 

documented the results of our experiments and explained 

our insights. Finally, Section V concludes our paper and 

gives future directions in which our proposed approach can 

be used. 

II. RELATED WORK 

Fault localization is the task of locating suspicious part 
of the software which is causing the bugs after an 
undesirable behavior has been detected. Users report the 
undesirable behavior and now it is the task of the developers 
to provide assistance in getting it resolved. Developers have 
been providing this facility of resolving bugs ever since the 
existence of software. They have used various techniques 
which have evolved over the years.  

In the beginning, developers used to make use of print 
statements in order to locate the faulty part of the code. 
After that break points were added and the code was 
debugged to narrow down the faulty part of code. These 
techniques required a lot of manual labor and consumed 
more time [5]. With time the techniques for fault 
localization were automated. This created a lot of ease and 
helped us in locating bugs quicker than before. Furthermore, 
the error rate was also reduced. These techniques can be 
divided into two broad categories i.e. static based and 
dynamic based. Dynamic based approaches require a 
functional system to localize the faults. By executing the test 
cases, the pass and fail traces are identified and through this 
the faulty part of code is localized. In [6-11] authors have 
used different modifications of dynamic based techniques. 
In spite of all the work done researchers have placed a 
greater focus on static based techniques because of their 
advantage over dynamic based techniques. Static based 
techniques can be use on a partially developed system, are 
independent of programming language and do not require 
the creation and execution of test cases. Our approach falls 
in the category of static based technique so we have only 
discussed static based approaches from the literature in 
detail here.  

In static based techniques different Information Retrieval 
(IR) methods are used for fault localization. The 
conventional methods are based on lexical matching [12]. 
The contents from the bug report which are reported by the 
end user when he/she experiences an undesirable behavior 
from the system is matched with source code artifacts. 
Finally, the piece of code is suggested to the developer 
which is faulty.  

In [13] authors used the IR methods for finding the 
traceability links between the source code and the different 
documentation of the software. The terms of documentation 
which are written in natural language (NL) are matched with 
the source code artifacts. They considered the Vector Space 
Model (VSM) and probabilistic model for that purpose. 
They tested their approach on two subject systems amongst 
which one is in C++ language and the other is in Java 
language. The results show that the approach gives 100% 
recall.  

In [14] authors developed a system for a clinic. It takes 

the image as an input and using the contents of that image 

i.e. color, shape and texture the image is matched with the 

previous images stored in the database and as a result the 

same images are provided to the user.  
In [15] authors proposed a method which suggest the 

interesting elements to the developer by taking his/her 
interested code elements. The method statically finds out the 
elements of the source code and the elements are shown to 
developer in a tree structure. From the elements the 
developer selects the element of his/her interest and the 
algorithm finds the fuzzy set of related elements of the 
interest. The results show that the method helps in finding 
the elements of interest of the code to developer which are 
needed to be investigated.  

In [16] authors used the IR method to recommend the 
items to the user. They have found the last ‘w’ number of 
visited pages from the user profile history. From the 
founded pages the top ‘k’ terms are retrieved using the 
content based filtering (CBF). And from these terms the ‘k’ 
queries are defined and against these queries the relevant 
links are derived from the web. From the selected ‘k’ terms 
the association rules are found using collaborative filtering 
(CF). The combined results are shown to the user. The study 
is conducted on a university website and the results show 
that the performance of the approach is good.   

In [17] authors used the IR method for fault localization 
at character level instead of word level. They used the n-
gram based model which matched the terms of source code 
with the bug report terms. It matched the combined terms of 
source code which are written in camel case with the bug 
report terms. It also provided the advantage of stemming as 
it matches at character level. The results show that it 
produces effective mean average precision (MAP).  

In [18] authors proposed a method named “BugLocator”.  
It firstly locates the previous similar bugs of a new bug from 
the history using revised vector space model (rVSM). The 
files are extracted which were modified for fixing the 
previous bugs. On the basis of the similarity score the old 
modified files are suggested to the developer. Th results 
show that the method improves the old VSM, LDA, LSI and 
SUM methods.  
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In [19] authors proposed a method “BLUiR” (Bug 
Localization Using Information Retrieval). The method 
finds out the elements from the source code i.e. class name, 
method name, variable name. It then tokenizes the 
identifiers and stores that information in the XML format. 
Later it uses indexing for linking the tokens of XML file. 
From the file the abstract syntax tree (AST) is found through 
Eclipse Java development tool (JDT). The experiments are 
conducted with 3,400 bugs and the results show that it 
performs better than the state of art “BugLocator”.  

In [20] authors proposed a method named “AmaLgam”. 
It analyzed the version history which is used in google. 
From the history past ‘K’ days commits are identified 
containing the word “fix” or “bug”.  From these commits 
the changed files are retrieved. From the history the similar 
bugs are identified using the “BugLocator” method 
previously identified, and the files are retrieved which are 
modified in order to fix the old previous bugs. It tokenizes 
the source code into class name, method name and variable 
name using the “BLUiR” method previously proposed. 
From all the three components the results are combined and 
suggested to the developer. Experiments are conducted on 
four open source projects and the results show that it 
improves 24% as compared to “BugLocator” and 16% as 
compared to “BLUiR” using mean average precision (MAP) 
value.  

In the above discussed papers most of the papers are 
based on lexical matching as conventional IR is based on 
lexical matching while some have considered using the 
semantic methods. In lexical matching the problem of 
vocabulary mismatch occurs as the vocabulary of any 
programming language is limited. Also, due to a lot of 
repetition in the source code the precision value decreases 
and as a result the accuracy of IR methods is very low.  
Some are semantic based i.e. LDA, LSI but they are 
computationally costly.  

In [21] the authors proposed an information theoretic 

based IR approach for fault localization which is based on 

relatedness. Those methods are used namely Pointwise 

Mutual Information (PMI) [22] and Normalized Google 

Distance (NGD) [23] which keep in consideration the 

context. The results show that the approach outperforms the 

literature lexical matching based approaches Vector Space 

Model (VSM), Jensen-Shannon Model (JSM), and the 

semantic based method Latent Semantic Indexing (LSI). 

III. PROPOSED APPROACH 

In this paper we have proposed an IR based technique 
which uses word embedding model for localizing faults. 
Figure 1 shows our proposed approach. Firstly, we have 
trained our word embedding model by historical bug data. 
After that on arrival of a new bug, we have used our trained 
word embedding model in two dimensions i.e. first, it gives 
us all the similar terms against the bug terms and second it 
gives us all the relevant terms to the bug terms. When 
dealing with the similar terms the word embedding model 
will provide similar terms and now using these terms we will 
make combinations of the terms with the bug terms and 
suggest files from the source code that it deems suspicious. 
On the contrary when dealing with relevant terms the word 
embedding model will provide relevant terms to the bug 

terms and these relevant terms will be searched individually 
from the source code and files will be suggested. 

In the next subsections we will explain our proposed 
approach in detail. 

A. Training Section 

1) Mining of Repositories 

The training data for the word embedding model is mined 

from the bug repositories. This data is served as an input to 

the model after it is preprocessed.   

 

2) Preprocessing 

The preprocessing step involves tokenization, removal 

of stop word and lemmatization. 

 Tokenization: 

In this step the bug data gets split into 

terms which are called tokens. The bug title 

and bug description terms are split on the 

bases of space between them and later 

compared with the source code terms. 

 

 Removal of Stop Words: 

Stop words are frequently used words that 

are usually ignored when natural language data 

is preprocessed. Commonly used stop words 

are the, and, it, etc.  

Therefore, after splitting the terms, the 

remaining words are checked for stop words 

and those terms are removed. 

 Lemmatization: 

Lemmatization shortens a word to a 

common prefix while keeping in mind the 

grammatical context.  

Here the words from the previous step are 

reduced to their respective lemmas. 

 

After this the bug data is said to have been preprocessed 

and ready for training the word embedding model. 

 

3) Word Embedding Model 

The preprocessed data form the bug repositories from the 

previous step serves as an input for the word embedding 

model. The word embedding model assigns different 

weightages to the terms of the bug repository data. It keeps 

in consideration the similarity and relatedness factor when 

assigning weightage. The terms having higher similarity 

would have a greater weightage as compared to terms that 

do not have high similarity. For relatedness the terms which 

are more likely to be related to each other would have a 

higher weightage. 

B. Testing Section 

1) Arrival of bug 

When a user interacts with a system it is bound to 

encounter a bug at some point. On encountering a bug, they 

report it by making a bug report. A bug report is a detailed 

description of the users account of the undesirable scenario 

that they have witnessed.  

 

2) Preprocessing 
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After a bug report has arrived, its contents are 

preprocessed by performing tokenization, removal of stop 

words and lemmatization. We have discussed these steps in 

detail earlier in Section III. Here also the same process 

would be done for the newly arrived bug. 

 

3) Word Embedding Model 
We have used a trained word embedding model and have 

already explained in detail in the previous subheading. In this 
step the preprocessed bug data from the previous step 
becomes an input for the trained word embedding model. 
The model works on the preprocessed data and produces a 
list of words based on comparison between the bug data and 
the model’s trained data set. For our approach we have 
obtained two different sets of words from the model 

a) Similar Context terms 

The first list of words is made up of similar terms to 

the bug terms. For example, if the bug term is “memory” 

then the word embedding model come up with terms which 

are similar to memory like storage and RAM. 

b) Relatedness Terms 

The second list is made up of words which are related to 

the input bug terms. For example, here for the same term 

“memory” the word embedding model will come up with 

related terms like overflow and underflow. 

 

4) Selection of terms 

From the words produced by the model, the top ten 

words are considered for comparison with the source code 

terms as researchers have declared the top ten words are the 

most relevant words.1 

                                                           
1 https://pydata.org/code-of-conduct.html 

5) Matching with source code 

 In case of similar words list, all the combinations of the 

similar bug terms are made and searched in the source code. 

In contrast when considering the related bug terms list, the 

terms of same topic are searched in the source code. 

6) Sorting of Files 

The files are sorted based on the amount of occurrence 

of each term produced by the word embedding model. 

7) Selection and Suggestion of Files 

Finally, from the sorted files the top three files are the 

ones that are supposed to contain the bug. These files are 

declared as suspicious files. 

 

IV. EXPERIMENTS,  RESULTS AND EVALUATION 

The experiments are conducted to validate our proposed 

approach. We have performed experiments on “MoreBugs” 

[24] dataset2 which is a benchmark data set and is widely 

used in research of fault localization. The results are shown 

in detail in the next subsections. 

A. Performance of Proposed Approach 

It is of utmost importance that our proposed approach 

detects the bugs correctly. The number of correctly 

identified bugs would directly reflect on its performance. 

For this purpose, we have calculated the number of correctly 

identified bugs by our proposed approach through the 

 evaluation metrics of recall. Results indicate that our 

proposed approach has more recall value. 

As we have explained in Section III we have used our 

word embedding model to obtain two different set of lists 

i.e. similar terms and related terms. Here while observing 

performance we have taken both those lists and calculated 

                                                                                                  

 
2 https://engineering.purdue.edu/RVL/Database/moreBugs/ 

 

Figure 1 A Fault Localization Process Using Word Embedding Model 

 

https://pydata.org/code-of-conduct.html
https://engineering.purdue.edu/RVL/Database/moreBugs/
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their respective recall. Table I and Table II show our 

performance of proposed approach using both the different 

word lists. 

Table I. Performance of Proposed Approach 

Considering Similar Terms 

System Average Recall 

AspectJ 52% 

 

Table II. Performance of Proposed Approach 

Considering Related Terms 

System Average Recall 

AspectJ 76% 

 

B. Research Questions 

RQ1. Does our approach improve the performance of bug 

localization? 

In order to calculate the improvement made by our proposed 

approach we have made comparison with the previously 

proposed approaches in the literature. As we have discussed 

in the Related Work section of our paper that the IR based 

approaches are lexical based and some considered the 

semantics. So we have made comparison with the Vector 

Space Model (VSM), Latent Semantic Indexing (LSI) and 

also the methods Pointwise mutual information (PMI), 

Normalized Google Distance (NGD) which are proposed in 

the 2018 paper from which we get motivation. The results 

are shown in Table III. 

Table III. Comparison of Proposed Approach with 

Other Approaches 

Approaches Average Recall 

Proposed Approach 

(with Similarity 

Terms) 

52% 

VSM 22.5% 

LSI 21.8% 

PMI 45% 

NGD 41.5% 

 

RQ2. How many terms appear in a bug report on average 

and what is the impact of bug report length? 

In Table IV we have shown the average number of terms 

that a bug report has. To confirm the effect of bug report 

length we have calculated the results of our proposed 

approach by considering bug title information and on the 

other hand we have also calculated our results by 

considering bug title and bug description information. Table 

V gives an insight to our findings related to this. We can 

conclude that if the length of bug report is greater than it 

gives better recall but there will be a slight decline in 

precision. 

 

 

Table IV. Average Bug Report Length 

System 
Average length of 

bug report 

AspectJ 10 

 

 

Table V. Impact of Bug Report Length 

System 

Proposed Approach 

with Bug term 

Proposed Approach 

with Bug Term and 

Bug Description 

Average Recall Average Recall 

AspectJ 76% 77.6% 

RQ3. In which cases the proposed approach outperforms 

others? 

Our proposed approach would help in regards when the 

vocabulary mismatch problem would occur. Using the 

similar words that the word embedding model produces, we 

can reach the part of the code that is more likely to contain 

the bug.  In addition, when related words are produced by 

the word embedding model against the new arrival bug 

term, they can be used to obtain all the terms from history 

bugs related to it and help us in finding parts of source code 

that might contain them. This widens our search results and 

helps us in narrowing down the bug using the concept of 

relatedness. 

C. Why our Technique Works 

Whilst performing fault localization using bug reports, 

the user sometimes uses terms which are not directly used in 

the source code. Therefore, fault localization becomes 

difficult. Through our proposed approach we have found out 

the related and similar bug terms from historical bug 

repository’s data which helps us in narrowing down the 

fault. Using similar and related terms to the ones in the bug 

reports, we are able to identify the actual location of bug in 

the source code. 

V. CONCLUSIONS AND FUTURE WORK 

Providing maintenance by localizing faults is an 

important phase of software development. With the increase 

in the complexity and size of software, there is need for 

performing fault localization through efficient ways. In the 

past many different techniques have been proposed in 

literature. Most of these techniques are lexical and therefore 

result in the vocabulary mismatch problem. Others are 

semantic based and therefore are computationally 

expensive. 

In this paper we have proposed a word embedding model 

which is trained on historical bug data and provides similar 

and related terms suggestions for newly arrived bug terms. 

We have validated our approach by using the MoreBugs 

dataset and implemented it on AspectJ system. We have also 

compared our proposed approach with existing techniques 

and discovered that our proposed approach gives better 
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recall. In the future we will also incorporate software change 

repositories with our proposed technique. 
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