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Abstract:

Alzheimer’s Disease (AD) is the most common type of dementia and is caused by the
accumulation of amyloid-beta plaques in the brain. Worldwide cases of dementia are
expected to triple by 2050, which underscores the importance of early diagnosis. In our work,
we proposed a multibranched CNN with three concatenations among the branches and
tested the method on a dataset accessed from Kaggle. We also implement the SMOTE
algorithm on the dataset to overcome class imbalance. The proposed CNN achieved 99.64%
accuracy and 99.89% F1-Score on test data and outperformed the various existing methods.
The proposed architecture is special because of its ability to extract intricate features at finer
levels. The research paves the pathway for improved treatment plans and better prognosis
of AD.

Keywords: Alzheimer's Disease; Artificial Intelligence; CNN; SMOTE.

1. Introduction

Alzheimer’s disease is a neurodegenerative disorder [1], caused by the
accumulation of amyloid-beta peptide in the brain [2]. Being the most
common type of Dementia [3], it is characterized by cognitive impairment
and gradual loss of memory, ultimately disturbing the speech, behavior,
spatial orientation, and motor control [4]. The risk of occurrence of AD is
highly dependent on genetics [5]. In the USA, AD is now the 6th leading
cause of mortality [6]. According to [7], the cases of dementia are expected
to increase by three times by 2050.

In addition to amyloid-beta, the other major biomarkers of AD include the
phosphorylated tau-protein [8], oxidative stress [9], chronic inflammation
induced by microglia [10], changes in composition and dysfunction of
membrane lipid metabolism [11], and changes in neurotransmitter
pathways [12]. A range of diagnostic procedures has been established
with an aim to identify AD in its earlier stages [13]. These include metbolic
analysis through mass spectrometery [14], neuroimaging techniques such
as MRI [15], PET [16], MRS [17], CT [18], EEG [19] and EvestG [20] etc.,
Cognitive assessment tools such as Mini Mental State Examination
(MMSE) [21] and biomarker assays [22] can also be helpful in identifying
the subjects with cognitive impairment.

Due to their non-invasive nature and ability to provide comprehensive
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structural, functional, and metabolic features, the neuroimaging techniques are preferred over cognitive
assessment tools and biomarker assays [23]. Although neuroimaging modalities are useful, but their
manual interpretation is a labor-intensive and time-consuming process, and is sensitive to lack of
universality, and subjective errors [24]. Deep learning methods such as CNNs possess a great deal of
potential in the analysis of high-dimensional neuroimaging data such as MRI and CT scans [25]. The
CNNs can extract underlying intricate patterns in high-dimensional data [26], offer robustness to noise
and artefacts [27], can handle multimodal data [28], and are able to automate the analysis procedure
with greater efficiency [29].

To advance the field of Computer-Aided Diagnosis Systems and to address the multiclass classification
problem of Dementia, we introduce a CNN architecture. The main contributions of our work include:

= QOvercoming the class imbalance by using the SMOTE Algorithm [30]
= A novel CNN architecture with multiple branches

The rest of the paper is organized as follows: Related Work provides a brief overview of existing studies
on the topic, Materials and Methods section entails the proposed methodology in detail, Results section
presents the outcomes of our method and provides a brief comparison to existing methods, while the
Discussion and Conclusion sections provide a comprehensive analysis of the study.

2. Related Work

In some studies, EEG data were also used to predict AD [31], but we focused only on the studies using
imaging data to predict AD. The authors in [32] used VGG16 with the mRMR algorithm to perform 4-
way classification of dementia using 6400 MRI images of the Brain and achieved 98.6% accuracy.
Similarly, a VGG16-based transfer learning method in [33] achieved 97.44% accuracy using the same
dataset as in [32]. A 12-layer CNN was proposed in [34], trained on the OASIS dataset [35] for AD
staging achieved 97.8% accuracy. A novel CNN architecture having two branches, which were trained
in parallel using the ADNI [36] dataset, and the outputs were concatenated to further process and
perform classification of AD in [37], reached the accuracy value of 99.57% in a 4-way classification
problem. A combination of XGBoost, Random Forest, and CNN was used in [38], and the model was
trained on the ADNI [5] dataset; their proposed approach maintained the final accuracy of 97.52%. The
authors in [39] used deer hunting optimization (DHO) with a pretrained CNN for binary and multiclass
classification problems of AD. Their approach attained an accuracy of 96% and 93% for binary and
multiclass classification problems, respectively. A CNN built on top of pretrained InceptionV3 was
proposed in [40]. CNN in combination with LSTM was used for early prediction of cognitive impairment
in [41] using MRI, PET, and neurophysiological data. CNN was combined with the particle swarm
optimization (PSO) algorithm in [42] and was trained on ADNI, Kaggle, and a private dataset for AD
classification. Combining the handcrafted features and those extracted from GoogleNet, the feed-
forward neural network (FFNN) [43] maintained an accuracy of 99.5%.

Although there are promising results presented in the existing studies, there are no restrictions to
explore different approaches and architectures for CNNs. The current issues related to AD/ Dementia
detection and classification include limited datasets, huge imbalances among classes of data, and the
need for more efficient and robust models.

3. Materials and Methods

3.1. Dataset

The dataset used to test the performance of the proposed CNN was accessed from Kaggle. It consisted
of a total of 6400 MRI images belonging to four classes divided into train and test sets, and details of
class-wise distribution are presented in Table 1. A few images from the dataset are shown below in
Figure 1.
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Table 1: Class wise distribution

Datd’

Mild Demented L Non Demented a7 Ll

Demented Demented
Train 717 52 2560 1792
Test 179 12 640 448
Total 896 64 3200 2240

NonDemented

VeryMildDemented

NonDemented

NonDemented

MildDemented

MildDemented

NonDemented

VeryMildDemented

Figure 1: A few sample images from the dataset

3.2. Dataset Preparation Phase

First, the images in the training and testing sets were combined. The sample size of each class and
class-wise distribution of data after combining the training and testing folders are demonstrated in
Figures 2 and 3.

Sample Size of Each Class

3000 4

2500 7

5]
[=]
[=]
=

1300 4

No. Of Images

1000 A

500 4

NonDemented MildDemented

Class Lables

ModerateDemented veryMildDemented

Figure 2: Sample size after combining train and test sets

All the images were rescaled across the color channels, and the color format was converted from BGR
to RGB. To keep the uniformity, all images were resized to (176, 176). The main problem with this
dataset was the huge imbalances among classes. There are two techniques to overcome this issue.
The first one is to downsample the majority classes to match the size of the minority class. In our case,
the minority class has only 64 images, so the downsampling would result in a huge loss of data. The
second option is to upsample the minority classes to match the size of the majority class or to a set
target size [44]. Looking at the challenges of data loss and class imbalances, we adopted the second

technique.
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Distribution of Classes

VeryMildDemented

MildDemented

ModerateDemented

NonDemented

Figure 3: Class-wise distribution of the dataset before upsampling

We used the Synthetic Minority Oversampling Technique (SMOTE) [45] to upsample the minority
classes in our data to match the size of the majority class, i.e., 3200 images. The working of the SMOTE
algorithm is described here: it first identifies the minority class and selects a random instance for this
class. Then, it finds the k-Nearest Neighbors of the selected instance. Then the new instances are
synthesized by interpolating between the original instance and its k-Neighbors (k=10, in our case). The
synthesized instances are then added to the dataset, thus increasing the volume of data efficiently.
SMOTE works on all minority classes until the desired data size is attained.

Figure 4 is the graphical representation of how SMOTE works, and the image was accessed from [46].

Minority Sample Class

é Majority Sample Class
[ ]
[}

Synthetic Samples
Figure 4: Graphical representation of the SMOTE algorithm

After using the SMOTE method on our chosen dataset, the size of the data increased from 6400 to
12800 images, and each class contained 3200 images, thus resulting in an enhanced and balanced
dataset. The same is shown in Figures 5 and 6.

3.3. Data Partitions

After overcoming the issues of a smaller and imbalanced dataset, we split the dataset into train,
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Figure 5: Sample size of each class after upsampling
Distribution of Classes
VeryMildDemented NonDemented

25.0% 25.0%

MildDemented ModerateDemented

Figure 6: Class-wise distribution of the dataset after upsampling

validation, and test sets. The data partition was carried out in two steps: the first split was used to divide
the data in a 70:30 ratio, where 30% data was preserved as a test set. The second split was applied to
the 70% data from the first split to equally divide this into two further subsets. One of these subsets was
used as a training set, and 2nd subset was used as a validation set. If we look at the data partition
method, it is obvious that only 35% of the original data was used for training, and the same percentage
was used to validate the training iterations, with the remaining 30% used to test the trained model. The
data partition process is represented in Figure 7.

3.4. Architecture of the Proposed CNN
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Datd’
Training Data
(50%)
Training Data
(70%)
Validation
Test Data

(30%)

Figure 7: Representation of the data partitions method

The proposed CNN implements multiple steps of feature extraction and concatenation. In the first
step,the input training data is fed to two identical branches (branch_1 & branch_2), each having two 2D
Convolutional layers and a 2D Maxpooling layer. First convolutional layer uses 32 filters and the second
uses 64 filters with the same kernel size of (3,3) in both. Maxpooling layer uses a kernel of size (2,2).
The activation used here is ReLU. The outputs from these two self-similar branches are concatenated,
and the resulting feature maps are fed to the next phase, where again two branches (branch_3 &
branch_4) are trained at the same time on this feature map. The kernel size in Convolutional and
Maxpooling layers in these branches is similar to the previous two. Except that branch_3 uses 128
filters and branch_4 uses 256 filters. The outputs from these two are then again concatenated, and the
resulting feature map is fed to two further branches (branch_5 and branch_6). The kernel sizes for
Convolution and Maxpooling layers in these branches are also similar to the previous ones. Branch_5
uses 128 filters while branch_6 uses 64 filters. The output feature maps from branches 5 and 6 are
concatenated, and the final feature vector is passed to a Flatten layer. Following the Flatten layer, there
are three Dense layers having 512, 256, and 128 neurons, respectively. Finally, a classification layer
with 4 neurons and SoftMax activation is incorporated, which completes the model. The model is
compiled using ‘adam’ optimizer, and ‘categorical cross-entropy loss’ with Accuracy and F1-Score as
performance metrics. Upon compilation, the model gets 34083204 trainable parameters. The model
architecture is shown in Figure 8.

INPUT (176,176,3)

Conv2D Conv2D
Conv2D Conv2D

MaxPool2D MaxPool2D
Concatenation_1

Conv2D Conv2D
Conv2D Conv2D

MaxPool2D MaxPool2D

Concatenation_2

Conv2D Conv2D
Conv2D Conv2D

MaxPool2D MaxPool2D

Concatenation_3

Flatten

Output

Figure 8: Architecture of the proposed cnn
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3.5. Training Setup

Datd’

The proposed model was trained for 100 iterations/ epochs, where each training iteration was
completed in 280 steps, and input data was fed in batches, each consisting of 32 images. Each training
iteration was validated by using a sample of data from the validation set. Categorical Cross Entropy
Loss, Accuracy Score, and F1-Score were monitored throughout the training period. The

hyperparameters of the proposed CNN are given in Table 2.

Table 2: Hyperparameters for the proposed CNN

Hyperparameters
Activation RelLU
Optimizer Adam
No. of Epochs 100
Classification SoftMax
Loss Function Categorical Cross Entropy

The methodology implemented in our study is represented in the following diagram, as shown in Figure

9.

Training Set Testing Set

Combined Dataset

Image
PROCESSING

BGR to RGB Conversion
2. Image Rescaling
Image Resizing

Dataset Balancing
(By SMOTE)

Dataset Partitioning

Model Trainig

Evaluation

Figure 9: Representation of the proposed methodology
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4. Results

4.1. Performance Evaluation

Datd’

The performance evaluation of the model after 100 iterations of training is summarized in Table 3.

Table 3: Model evaluation metrics after training for 100 epochs

Performance Evaluation of the Proposed CNN

Train Val. Test
LOSS 0.055 0.047 0.0319
ACCURACY 1.00 0.9932 0.9964
F1-SCORE 1.00 0.9932 0.9989

During the training phase, the model maintained the perfect Accuracy and F1-score values (1.00), and
the loss value was nearing zero. During the validation phase, the model exhibited the fascinating results
as it maintained the accuracy and F1-Score of 0.9932, and the loss Value was 0.047 during this phase.
When evaluated on test data, the loss value dropped to 0.0319, model accuracy improved to 0.9964,
and the average F1-Score jumped up to 0.9989. The near-perfect values of evaluation metrics for the
validation and testing phase and the negligible difference between the corresponding values for the
training phase demonstrate the efficiency of our proposed CNN architecture.

4.2. Learning Curves

The learning curves for Model Loss and Model Accuracy were generated to interpret how well the model
performed during the course of training. Learning curves for model accuracy and model loss during

training and validation steps are presented in Figure 10.

Model Accuracy Model Loss
1.0 = Train Loss
: /’\.f"\/" validation Loss
f 4]
0.9 1 (
|
|
0.8
|‘ 1
~, 07 |
o
g | | 9
3 [=!
0 e i P
[¥]
<
05 ]
|
|
0.4 ' ||
|
II
03 \
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Epochs

Epochs

Figure 10: Model accuracy and loss for training and validation

4.3. Confusion Matrix

The confusion matrix was also generated to closely monitor the performance of the CNN for individual
classes and monitor the false positives on test data. There were a total of seven false positive

45
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predictions, one for the Mild Demented Class, one for the Non Demented Class, and five for the Very
Mild Demented Class. Confusion matrix is shown in Figure 11.

Confusion Matrix
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Figure 11: Confusion matrix
4.4. Class-wise Performance Metrics

The confusion matrix was further evaluated to determine the Precision, Recall, and F1-score values for
each class. These class-wise performance metrics for the proposed CNN are summarized in Table 4.

Table 4: Class-wise evaluation metrics

Class Precision Recall F1-Score
Mild Demented 0.9979 1.00 0.9990
Moderate Demented 1.00 1.00 1.00
Non-Demented 0.9979 0.9875 0.9927
Very Mild Demented 0.9897 0.9879 0.9938

4.5. Comparison with State-of-the-Art

To evaluate how well our model performed, a comparison against the existing studies was conducted
in terms of the performance evaluation metrics and is summarized in Table 5.

5. Discussion

After assessing the model's performance and conducting a comprehensive comparison against the
existing methods, it was revealed that the proposed model is capable of precisely differentiating
between four stages of dementia. Various studies have introduced different models for staging the
problem of dementia and categorizing AD. The exceptional results of our method highlight the
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Table 5: Comparison of the proposed approach with existing studies

Year and
Ref.

Method

Dataset

Results

2024 [32]

2023 [33]

2023 [34]

2024 [37]

2023 [38]

2023 [39]

2023 [40]

2023 [41]

2023 [42]

VGG16 + mMRMR

VGG16

CNN

Dual-Branch CNN

XGBoost + RF + CNN

CapsNet + DHO

InceptionV3

CNN + LSTM

CNN + PSO

Kaggle (6400 MRI Images)

Kaggle (6400 MRI Images)

OASIS

ADNI

ADNI
ADNI

Kaggle (6400 MRI Images)

MRI, PET

ADNI
Kaggle
Private

Acc. = 98.59
Sensitivity = 98.78
Precision = 99.01
F1-Score = 98.89

Acc. = 97.44%
Precision = 97.46%
Recall = 97.49%
F1-Score = 97.48%

Acc. = 97.8%
F1-Score = NOT REPORTED
Acc. =99.57%
Precision = 99.57%
Recall = 99.57%
F1-Score = NOT REPORTED
Acc. = 97.52%
Sensitivity = 97.6%%
F1-Score = NOT REPORTED
Acc. = 96%
F1-Score = NOT REPORTED
Acc. =97.31%
F1-Score = 97.05%

Acc. =98.51%
Precision = 94.8%
Recall= 98%
F1-Score = NOT REPORTED
Acc. = 98.50%

Acc. = 98.83%

Acc. =97.12%

F1-Score = NOT REPORTED
Acc. =99.50%
Precision = 99.33%
Sensitivity = 99.39%
F1-Score = NOT REPORTED
Acc. =99.64
F1-Score = 99.89%

2023 [43] GoogleNet + CNN Kaggle (6400 MRI Images)

Multi-Stage CNN with

Our Study Layer Concatenation

Kaggle (6400 MRI Images)

importance of DL in computer-aided diagnosis systems. The key factor behind the near-perfect results
was feature extraction at various levels and the use of different numbers of filters in parallel branches,
which makes the model capable of extracting features at both the coarser and the finer levels, thus
extracting most of the useful information hidden in the high-dimensional MRI scans.

The proposed architecture presents several advantages over the existing models in published literature.
Where most of the studies focus on a binary classification problem, we performed a 4-way classification
with an overall accuracy of 0.9964. Our focus was to distinguish between early stages of dementia,
which seems difficult, as there are no major visual differences shown on imaging data that can be
interpreted by the human eye. While using only 35% volume of the total data for training, the model was
able to extract and learn enough information so that it produced satisfying results. The first two self-
similar branches allow the collection of a large set of features, which are then processed by the following
branches, which compute and extract meaningful information at multiple levels of complexity. Branch_3
used 128 filters, and branch_4 used 256 filters, thus processing information at two different levels.
Branch_5 used 128 filters and branch_6 used 64 filters, thus again allowing two levels of information
extraction in parallel, resulting in a diversified set of features. Moreover, our proposed architecture is
highly modifiable; for example, one can evaluate by using a different number of filters and different
kernel sizes staying within the same architecture. Also, the architecture can be extended by increasing
the depth of each branch, thus enabling researchers to try different depth levels of feature extraction.

However, the proposed method has some limitations. The dataset used in our study may not capture
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the population variety, scanner variation, and acquisition protocols, so the proposed model needs to be
tested on other datasets available. Such complex architectures can lead to increased computational
costs and require more time to process the data. The processing of the same input at two levels in
parallel may lead to overfitting, which can be overcome by using an enhanced volume of validation data
and using shuffle to make sure the model doesn’t train on the same set of images during various steps
of training iteration.

Overall, the proposed architecture advances the field of computer-aided diagnosis systems and is highly
capable of assisting in early and precise diagnosis, which leads to better prognosis and enhanced
patient outcomes.

6. Conclusion

Our study presents a novel architecture of CNN for 4-way classification of AD/ dementia, by training on
brain MRI data. The aim was to extract most of the meaningful features from structural and spatial
domains at various levels of complexity, for analyzing the patterns related to AD. Experimental
evaluation and comprehensive comparison to the existing studies demonstrated the effectiveness of
our method. We achieved an overall accuracy of 0.9964, thus significantly surpassing the existing
methods. In conclusion, this research paves the way for further research to find improved treatment
plans and enhanced patient outcomes. The future studies should be focused on validating the
architecture on other diseases, and also, the modifications should be made to the architecture, keeping
in view the nature of the data.
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