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Abstract:   

Alzheimer’s Disease (AD) is the most common type of dementia and is caused by the 

accumulation of amyloid-beta plaques in the brain. Worldwide cases of dementia are 

expected to triple by 2050, which underscores the importance of early diagnosis. In our work, 

we proposed a multibranched CNN with three concatenations among the branches and 

tested the method on a dataset accessed from Kaggle. We also implement the SMOTE 

algorithm on the dataset to overcome class imbalance. The proposed CNN achieved 99.64% 

accuracy and 99.89% F1-Score on test data and outperformed the various existing methods. 

The proposed architecture is special because of its ability to extract intricate features at finer 

levels. The research paves the pathway for improved treatment plans and better prognosis 

of AD. 
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1. Introduction 

Alzheimer’s disease is a neurodegenerative disorder [1], caused by the 

accumulation of amyloid-beta peptide in the brain [2]. Being the most 

common type of Dementia [3], it is characterized by cognitive impairment 

and gradual loss of memory, ultimately disturbing the speech, behavior, 

spatial orientation, and motor control [4]. The risk of occurrence of AD is 

highly dependent on genetics [5]. In the USA, AD is now the 6th leading 

cause of mortality [6]. According to [7], the cases of dementia are expected 

to increase by three times by 2050. 

In addition to amyloid-beta, the other major biomarkers of AD include the 

phosphorylated tau-protein [8], oxidative stress [9], chronic inflammation 

induced by microglia [10], changes in composition and dysfunction of 

membrane lipid metabolism [11], and changes in neurotransmitter 

pathways [12]. A range of diagnostic procedures has been established 

with an aim to identify AD in its earlier stages [13]. These include metbolic 

analysis through mass spectrometery [14], neuroimaging techniques such 

as MRI [15], PET [16], MRS [17], CT [18], EEG [19] and EvestG [20] etc., 

Cognitive assessment tools such as Mini Mental State Examination 

(MMSE) [21] and biomarker assays [22] can also be helpful in identifying 

the subjects with cognitive impairment. 

Due to their non-invasive nature and ability to provide comprehensive 
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structural, functional, and metabolic features, the neuroimaging techniques are preferred over cognitive 

assessment tools and biomarker assays [23]. Although neuroimaging modalities are useful, but their 

manual interpretation is a labor-intensive and time-consuming process, and is sensitive to lack of 

universality, and subjective errors [24]. Deep learning methods such as CNNs possess a great deal of 

potential in the analysis of high-dimensional neuroimaging data such as MRI and CT scans [25]. The 

CNNs can extract underlying intricate patterns in high-dimensional data [26], offer robustness to noise 

and artefacts [27], can handle multimodal data [28], and are able to automate the analysis procedure 

with greater efficiency [29]. 

To advance the field of Computer-Aided Diagnosis Systems and to address the multiclass classification 

problem of Dementia, we introduce a CNN architecture. The main contributions of our work include: 

▪ Overcoming the class imbalance by using the SMOTE Algorithm [30] 

▪ A novel CNN architecture with multiple branches  

The rest of the paper is organized as follows: Related Work provides a brief overview of existing studies 

on the topic, Materials and Methods section entails the proposed methodology in detail, Results section 

presents the outcomes of our method and provides a brief comparison to existing methods, while the 

Discussion and Conclusion sections provide a comprehensive analysis of the study. 

2. Related Work 

In some studies, EEG data were also used to predict AD [31], but we focused only on the studies using 

imaging data to predict AD. The authors in [32] used VGG16 with the mRMR algorithm to perform 4-

way classification of dementia using 6400 MRI images of the Brain and achieved 98.6% accuracy. 

Similarly, a VGG16-based transfer learning method in [33] achieved 97.44% accuracy using the same 

dataset as in [32]. A 12-layer CNN was proposed in [34], trained on the OASIS dataset [35] for AD 

staging achieved 97.8% accuracy. A novel CNN architecture having two branches, which were trained 

in parallel using the ADNI [36] dataset, and the outputs were concatenated to further process and 

perform classification of AD in [37], reached the accuracy value of 99.57% in a 4-way classification 

problem. A combination of XGBoost, Random Forest, and CNN was used in [38], and the model was 

trained on the ADNI [5] dataset; their proposed approach maintained the final accuracy of 97.52%. The 

authors in [39] used deer hunting optimization (DHO) with a pretrained CNN for binary and multiclass 

classification problems of AD. Their approach attained an accuracy of 96% and 93% for binary and 

multiclass classification problems, respectively. A CNN built on top of pretrained InceptionV3 was 

proposed in [40]. CNN in combination with LSTM was used for early prediction of cognitive impairment 

in [41] using MRI, PET, and neurophysiological data. CNN was combined with the particle swarm 

optimization (PSO) algorithm in [42] and was trained on ADNI, Kaggle, and a private dataset for AD 

classification. Combining the handcrafted features and those extracted from GoogleNet, the feed-

forward neural network (FFNN) [43] maintained an accuracy of 99.5%. 

Although there are promising results presented in the existing studies, there are no restrictions to 

explore different approaches and architectures for CNNs. The current issues related to AD/ Dementia 

detection and classification include limited datasets, huge imbalances among classes of data, and the 

need for more efficient and robust models. 

3. Materials and Methods 

3.1. Dataset 

The dataset used to test the performance of the proposed CNN was accessed from Kaggle. It consisted 

of a total of 6400 MRI images belonging to four classes divided into train and test sets, and details of 

class-wise distribution are presented in Table 1. A few images from the dataset are shown below in 

Figure 1. 



Aslam et al. “A Multistage CNN with Branch Concatenation for Classification of Dementia Using MRI 
Data” 

 

Foundation University Journal of Engineering and Applied Sciences, Vol. 6, Issue 1.     40 

Table 1: Class wise distribution  

 Mild Demented 
Moderate 
Demented 

Non Demented 
Very Mild 
Demented 

Train 717 52 2560 1792 

Test 179 12 640 448 

Total 896 64 3200 2240 

 

 

Figure 1: A few sample images from the dataset 

3.2. Dataset Preparation Phase 

First, the images in the training and testing sets were combined. The sample size of each class and 

class-wise distribution of data after combining the training and testing folders are demonstrated in 

Figures 2 and 3. 

 

Figure 2: Sample size after combining train and test sets 

All the images were rescaled across the color channels, and the color format was converted from BGR 

to RGB. To keep the uniformity, all images were resized to (176, 176). The main problem with this 

dataset was the huge imbalances among classes. There are two techniques to overcome this issue. 

The first one is to downsample the majority classes to match the size of the minority class. In our case, 

the minority class has only 64 images, so the downsampling would result in a huge loss of data. The 

second option is to upsample the minority classes to match the size of the majority class or to a set 

target size [44]. Looking at the challenges of data loss and class imbalances, we adopted the second 

technique. 
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Figure 3: Class-wise distribution of the dataset before upsampling 

We used the Synthetic Minority Oversampling Technique (SMOTE) [45] to upsample the minority 

classes in our data to match the size of the majority class, i.e., 3200 images. The working of the SMOTE 

algorithm is described here: it first identifies the minority class and selects a random instance for this 

class. Then, it finds the k-Nearest Neighbors of the selected instance. Then the new instances are 

synthesized by interpolating between the original instance and its k-Neighbors (k=10, in our case). The 

synthesized instances are then added to the dataset, thus increasing the volume of data efficiently. 

SMOTE works on all minority classes until the desired data size is attained.  

Figure 4 is the graphical representation of how SMOTE works, and the image was accessed from [46]. 

 

Figure 4: Graphical representation of the SMOTE algorithm 

After using the SMOTE method on our chosen dataset, the size of the data increased from 6400 to 

12800 images, and each class contained 3200 images, thus resulting in an enhanced and balanced 

dataset. The same is shown in Figures 5 and 6.  

3.3. Data Partitions 

After overcoming the issues of a smaller and imbalanced dataset, we split the dataset into train, 
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Figure 5: Sample size of each class after upsampling 

Figure 6: Class-wise distribution of the dataset after upsampling 

validation, and test sets. The data partition was carried out in two steps: the first split was used to divide 

the data in a 70:30 ratio, where 30% data was preserved as a test set. The second split was applied to 

the 70% data from the first split to equally divide this into two further subsets. One of these subsets was 

used as a training set, and 2nd subset was used as a validation set. If we look at the data partition 

method, it is obvious that only 35% of the original data was used for training, and the same percentage 

was used to validate the training iterations, with the remaining 30% used to test the trained model. The 

data partition process is represented in Figure 7. 

3.4. Architecture of the Proposed CNN 
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Figure 7: Representation of the data partitions method 

The proposed CNN implements multiple steps of feature extraction and concatenation. In the first 

step,the input training data is fed to two identical branches (branch_1 & branch_2), each having two 2D 

Convolutional layers and a 2D Maxpooling layer. First convolutional layer uses 32 filters and the second 

uses 64 filters with the same kernel size of (3,3) in both. Maxpooling layer uses a kernel of size (2,2). 

The activation used here is ReLU. The outputs from these two self-similar branches are concatenated, 

and the resulting feature maps are fed to the next phase, where again two branches (branch_3 & 

branch_4) are trained at the same time on this feature map. The kernel size in Convolutional and 

Maxpooling layers in these branches is similar to the previous two. Except that branch_3 uses 128 

filters and branch_4 uses 256 filters. The outputs from these two are then again concatenated, and the 

resulting feature map is fed to two further branches (branch_5 and branch_6). The kernel sizes for 

Convolution and Maxpooling layers in these branches are also similar to the previous ones. Branch_5 

uses 128 filters while branch_6 uses 64 filters. The output feature maps from branches 5 and 6 are 

concatenated, and the final feature vector is passed to a Flatten layer. Following the Flatten layer, there 

are three Dense layers having 512, 256, and 128 neurons, respectively. Finally, a classification layer 

with 4 neurons and SoftMax activation is incorporated, which completes the model. The model is 

compiled using ‘adam’ optimizer, and ‘categorical cross-entropy loss’ with Accuracy and F1-Score as 

performance metrics.  Upon compilation, the model gets 34083204 trainable parameters. The model 

architecture is shown in Figure 8. 

 

Figure 8: Architecture of the proposed cnn 
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3.5. Training Setup 

The proposed model was trained for 100 iterations/ epochs, where each training iteration was 

completed in 280 steps, and input data was fed in batches, each consisting of 32 images. Each training 

iteration was validated by using a sample of data from the validation set. Categorical Cross Entropy 

Loss, Accuracy Score, and F1-Score were monitored throughout the training period. The 

hyperparameters of the proposed CNN are given in Table 2. 

Table 2: Hyperparameters for the proposed CNN 

Hyperparameters 

Activation ReLU 

Optimizer Adam 

No. of Epochs 100 

Classification SoftMax 

Loss Function Categorical Cross Entropy 

 

The methodology implemented in our study is represented in the following diagram, as shown in Figure 

9. 

 

Figure 9: Representation of the proposed methodology 
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4. Results 

4.1. Performance Evaluation 

The performance evaluation of the model after 100 iterations of training is summarized in Table 3. 

Table 3: Model evaluation metrics after training for 100 epochs 

Performance Evaluation of the Proposed CNN 

 Train Val. Test 

LOSS 0.055 0.047 0.0319 

ACCURACY 1.00 0.9932 0.9964 

F1-SCORE 1.00 0.9932 0.9989 

During the training phase, the model maintained the perfect Accuracy and F1-score values (1.00), and 

the loss value was nearing zero. During the validation phase, the model exhibited the fascinating results 

as it maintained the accuracy and F1-Score of 0.9932, and the loss Value was 0.047 during this phase. 

When evaluated on test data, the loss value dropped to 0.0319, model accuracy improved to 0.9964, 

and the average F1-Score jumped up to 0.9989. The near-perfect values of evaluation metrics for the 

validation and testing phase and the negligible difference between the corresponding values for the 

training phase demonstrate the efficiency of our proposed CNN architecture. 

4.2. Learning Curves 

The learning curves for Model Loss and Model Accuracy were generated to interpret how well the model 

performed during the course of training. Learning curves for model accuracy and model loss during 

training and validation steps are presented in Figure 10. 

 

Figure 10: Model accuracy and loss for training and validation 

4.3. Confusion Matrix 

The confusion matrix was also generated to closely monitor the performance of the CNN for individual 

classes and monitor the false positives on test data. There were a total of seven false positive 
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predictions, one for the Mild Demented Class, one for the Non Demented Class, and five for the Very 

Mild Demented Class. Confusion matrix is shown in Figure 11.  

 

Figure 11: Confusion matrix 

4.4. Class-wise Performance Metrics  

The confusion matrix was further evaluated to determine the Precision, Recall, and F1-score values for 

each class. These class-wise performance metrics for the proposed CNN are summarized in Table 4. 

Table 4: Class-wise evaluation metrics 

Class Precision Recall F1-Score 

Mild Demented 0.9979 1.00 0.9990 

Moderate Demented 1.00 1.00 1.00 

Non-Demented 0.9979 0.9875 0.9927 

Very Mild Demented 0.9897 0.9879 0.9938 

4.5. Comparison with State-of-the-Art 

To evaluate how well our model performed, a comparison against the existing studies was conducted 

in terms of the performance evaluation metrics and is summarized in Table 5. 

5. Discussion 

After assessing the model’s performance and conducting a comprehensive comparison against the 

existing methods, it was revealed that the proposed model is capable of precisely differentiating 

between four stages of dementia. Various studies have introduced different models for staging the 

problem of dementia and categorizing AD. The exceptional results of our method highlight the 
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Table 5: Comparison of the proposed approach with existing studies  

Year and 
Ref. 

Method Dataset Results 

2024 [32] VGG16 + mRMR Kaggle (6400 MRI Images) 

Acc. = 98.59 
Sensitivity = 98.78 
Precision = 99.01 
F1-Score = 98.89 

2023 [33] VGG16 Kaggle (6400 MRI Images) 

Acc. = 97.44% 
Precision = 97.46% 

Recall = 97.49% 
F1-Score = 97.48% 

2023 [34] CNN OASIS 
Acc. = 97.8% 

F1-Score = NOT REPORTED 

 2024 [37] Dual-Branch CNN ADNI 

Acc. = 99.57% 
Precision = 99.57% 

Recall = 99.57% 
F1-Score = NOT REPORTED 

2023 [38] XGBoost + RF + CNN ADNI 
Acc. = 97.52% 

Sensitivity = 97.6%% 
F1-Score = NOT REPORTED 

2023 [39] CapsNet + DHO ADNI 
Acc. = 96% 

F1-Score = NOT REPORTED 

2023 [40] InceptionV3 Kaggle (6400 MRI Images) 
Acc. = 97.31% 

F1-Score = 97.05% 

2023 [41] CNN + LSTM MRI, PET 

Acc. = 98.51% 
Precision = 94.8% 

Recall= 98% 
F1-Score = NOT REPORTED 

2023 [42] CNN + PSO 
ADNI 

Kaggle 
Private 

Acc. = 98.50% 
Acc. = 98.83% 
Acc. = 97.12% 

F1-Score = NOT REPORTED 

2023 [43] GoogleNet + CNN Kaggle (6400 MRI Images) 

Acc. = 99.50% 
Precision = 99.33% 
Sensitivity = 99.39% 

F1-Score = NOT REPORTED 

Our Study 
Multi-Stage CNN with 
Layer Concatenation 

Kaggle (6400 MRI Images) 
Acc. =99.64 

F1-Score = 99.89% 

importance of DL in computer-aided diagnosis systems. The key factor behind the near-perfect results 

was feature extraction at various levels and the use of different numbers of filters in parallel branches, 

which makes the model capable of extracting features at both the coarser and the finer levels, thus 

extracting most of the useful information hidden in the high-dimensional MRI scans. 

The proposed architecture presents several advantages over the existing models in published literature. 

Where most of the studies focus on a binary classification problem, we performed a 4-way classification 

with an overall accuracy of 0.9964. Our focus was to distinguish between early stages of dementia, 

which seems difficult, as there are no major visual differences shown on imaging data that can be 

interpreted by the human eye. While using only 35% volume of the total data for training, the model was 

able to extract and learn enough information so that it produced satisfying results. The first two self-

similar branches allow the collection of a large set of features, which are then processed by the following 

branches, which compute and extract meaningful information at multiple levels of complexity. Branch_3 

used 128 filters, and branch_4 used 256 filters, thus processing information at two different levels. 

Branch_5 used 128 filters and branch_6 used 64 filters, thus again allowing two levels of information 

extraction in parallel, resulting in a diversified set of features. Moreover, our proposed architecture is 

highly modifiable; for example, one can evaluate by using a different number of filters and different 

kernel sizes staying within the same architecture. Also, the architecture can be extended by increasing 

the depth of each branch, thus enabling researchers to try different depth levels of feature extraction. 

However, the proposed method has some limitations. The dataset used in our study may not capture 
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the population variety, scanner variation, and acquisition protocols, so the proposed model needs to be 

tested on other datasets available. Such complex architectures can lead to increased computational 

costs and require more time to process the data. The processing of the same input at two levels in 

parallel may lead to overfitting, which can be overcome by using an enhanced volume of validation data 

and using shuffle to make sure the model doesn’t train on the same set of images during various steps 

of training iteration.  

Overall, the proposed architecture advances the field of computer-aided diagnosis systems and is highly 

capable of assisting in early and precise diagnosis, which leads to better prognosis and enhanced 

patient outcomes. 

6. Conclusion 

Our study presents a novel architecture of CNN for 4-way classification of AD/ dementia, by training on 

brain MRI data. The aim was to extract most of the meaningful features from structural and spatial 

domains at various levels of complexity, for analyzing the patterns related to AD. Experimental 

evaluation and comprehensive comparison to the existing studies demonstrated the effectiveness of 

our method. We achieved an overall accuracy of 0.9964, thus significantly surpassing the existing 

methods. In conclusion, this research paves the way for further research to find improved treatment 

plans and enhanced patient outcomes. The future studies should be focused on validating the 

architecture on other diseases, and also, the modifications should be made to the architecture, keeping 

in view the nature of the data. 
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